Inland pollution sources of Doam bay were investigated from August to October in 2013. A total of 210 sources including rivers, streams, domestic, agricultural and industrial discharge points were identified along the coast, including 32 sources that had outflow. Agricultural sources were the largest inland pollution sources (139, 66.2%). Fecal coliform concentrations were measured. These data were combined with water discharge data to determine daily loads of pollutants discharged from each source into the bay. Fecal coliform concentrations were the highest in domestic discharges. However, they only had slight influence because their discharge volume was small. The most significant pollution source was Tamjin River (St.85) due to large amount of discharge volume. The influence of St.85 reached almost half of Doam bay. Fecal coliform levels of streams increased after rainfall, but decreased overtime. Domestic pollution sources were not affected upon rain event. 相似文献
Dimethyldithioarsinic acid (DMDTAV), present in such intense sources as municipal landfill leachate, has drawn a great deal of attention due to its abundant occurrence and different aspect of toxicity. The hydrosulfide (HS−) concentration in leachate was studied as a major variable affecting the formation of DMDTAV. To this end, the HPLC–ICPMS system equipped with the reversed-phase C18 column was used to determine DMDTAV. Simulated landfill leachates (SLLs) were prepared to cover a mature landfill condition with the addition of sodium sulfate and sulfide at varying concentrations in the presence of dimethylarsinic acid (DMAV). The concentration of sodium sulfide added in the SLLs generally exhibited a strong positive correlation with the concentration of DMDTAV. As such, the formation of DMDTAV in the SLLs is demonstrated to be controlled by the interactive relationship between DMAV and the HS−.
ABSTRACT: Atmospheric deposition can be a significant source of phosphorus to South Florida's aquatic system. Deposition samples are often contaminated to varying degrees by bird droppings or other foreign materials. This study attempted to use statistical and other methods to detect and remove the outliers in the rain-borne total phosphorus concentration data. Some outliers in the data were identified using field notes derived from visual inspection of the samples. Outlier detection statistics based on a simple linear regression were then used for additional data screening. As a result of these analyses, about 35 percent of the observed values were identified as outlying data which needed to be removed prior to further data analyses. Based on detected outliers in the data from 15 monitoring sites, a lumped cutoff value of 130 4mUg/L was determined. This lumped cutoff value may be useful for further quality control and analyses of the data from the region. 相似文献
Dry atmospheric deposition contributes a significant amount of phosphorus to the Everglades of South Florida. Measurement of this deposition is problematic, because samples often are contaminated to varying degrees by bird droppings and other foreign materials. This study attempted to detect and remove the outliers in phosphorus (P) flux rates measured from dry deposition samples. Visual inspection of the samples, recorded in field notes, found that 30.1% of the samples contained animal droppings and frogs. Some of the samples with droppings and frogs (2.3%) had P values greater than 884 μg P m−2 d−1 (a value twice the standard deviation of the raw data mean), and were removed from further analysis. Outlier detection statistics based on a linear regression were then used for additional data screening. Eight stations in the network of 19 were removed because high contamination precluded the use of the regression model. Of the remaining samples, 15.7% were identified through the regression procedure as contaminated and were removed. The 11 station mean for P dry deposition was 85.8±79.0 μg P m−2 d−1, prior to the regression analysis, and 74.8±75.1 μg P m−2 d−1 after removal. 相似文献
Summary. The oviposition-stimulating activity of (E)-capsaicin identified in the fruits of red pepper, Capsicum annuum L. (Solanaceae), towards the oriental tobacco budworm, Helicoverpa assulta (Guenée), was examined in the laboratory by using choice and no-choice bioassays. Results were compared with those of the
commercially available capsanthin and dihydrocapsaicin, another known constituents of C. annuum fruit, and (Z)-capsaicin. In no-choice oviposition bioassays at 10.5 μg/cm2, (E)-capsaicin was the most active oviposition stimulant. Weak stimulatory activity was observed with capsanthin, (Z)-capsaicin
and dihydrocapsaicin. In choice oviposition bioassays at 2.6 μg/cm2, there were significant differences in oviposition-stimulating activity between (E)-capsaicin and each of the other three alkaloids. Structure-activity relationships indicate that the presence of double bond
and its trans configuration appeared to play a crucial role in the oviposition-stimulating activity. On the basis of our results, (E)-capsaicin acts as a contact oviposition stimulant of female H. assulta. 相似文献
Decabromodiphenyl ether (BDE-209) is a major component of a commercial flame retardant formulation; however, there is limited information on the fate of BDE-209 in the environment, including metal oxide mediated degradation. Laboratory experiments were conducted to investigate the birnessite (delta-MnO(2))-promoted debromination of BDE-209 in tetrahydrofuran (THF)-water systems as well as catechol solutions. Up to 100% (0.1044 micromol initial charge) of BDE-209 disappeared upon reaction with birnessite in THF/H(2)O (4:6-9:1). The formation of aqueous Br(-) from BDE-209 reduction was determined and up to 16 mole% of initial bromine was released over the course of the reaction indicating approximately 1.7 Br-C bonds were reduced per BDE-209 molecule. The distribution of debrominated congeners, however, indicated a much greater extent of debromination for some products than what was inferred from an average bromine mass balance. The produced congeners varied from tetra- to nona-bromodiphenyl ether, including BDE-47 and -99, during the 24 h reaction. Experiments with deuterated water indicated that water was not the major hydrogen donor in the reduction but rather THF provided the reducing power. This conclusion was supported by the presence of succinic acid, which was produced from oxidation of THF. The reactions with aqueous catechol, rather than THF-water mixtures, were performed to assess the possible role that compounds found in natural environments, such a tannin-like phenols, might have on the chemistry. These experiments indicated that birnessite mediated debromination of BDE-209 might occur in natural settings. 相似文献
ABSTRACT: Management of a regional ground water system to mitigate drought problems at the multi‐layered aquifer system in Collier County, Florida, is the main topic. This paper developed a feedforward control system that consists of system and control equations. The system equation, which forecasts ground water levels using the current measurements, was built based on the Kalman filter algorithm associated with a stochastic time series model. The role of the control equation is to estimate the pumping reduction rate during an anticipated drought. The control equation was built based on the empirical relationship between the change in ground water levels and the corresponding pumping requirement. The control system starts with forecasting one‐month‐ahead ground water head at each control point. The forecasted head is in turn used to calculate the deviation of ground water heads from the monthly target specified by a 2‐in‐10‐year frequency. When the forecasted water level is lower than the target, the control system computes spatially‐varied pumping reduction rates as a recommendation for ground water users. The proposed control system was tested using hypothetical droughts. The simulation result revealed that the estimated pumping reduction rates are highly variable in space, strongly supporting the idea of spatial forecasting and controlling of ground water levels as opposed to a lumped water use restriction method used previously in the model area. 相似文献
Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed. 相似文献
A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time. 相似文献