首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16328篇
  免费   177篇
  国内免费   137篇
安全科学   416篇
废物处理   700篇
环保管理   2009篇
综合类   2619篇
基础理论   4461篇
环境理论   4篇
污染及防治   4240篇
评价与监测   1085篇
社会与环境   989篇
灾害及防治   119篇
  2022年   131篇
  2021年   113篇
  2020年   111篇
  2019年   118篇
  2018年   213篇
  2017年   248篇
  2016年   345篇
  2015年   289篇
  2014年   471篇
  2013年   1295篇
  2012年   517篇
  2011年   730篇
  2010年   644篇
  2009年   614篇
  2008年   705篇
  2007年   755篇
  2006年   626篇
  2005年   534篇
  2004年   546篇
  2003年   527篇
  2002年   528篇
  2001年   660篇
  2000年   487篇
  1999年   268篇
  1998年   186篇
  1997年   216篇
  1996年   214篇
  1995年   242篇
  1994年   249篇
  1993年   190篇
  1992年   201篇
  1991年   188篇
  1990年   208篇
  1989年   196篇
  1988年   163篇
  1987年   170篇
  1986年   159篇
  1985年   166篇
  1984年   153篇
  1983年   144篇
  1982年   138篇
  1981年   129篇
  1980年   122篇
  1979年   131篇
  1978年   106篇
  1977年   121篇
  1975年   90篇
  1974年   90篇
  1973年   99篇
  1972年   89篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
781.
ABSTRACT

While researchers have linked acute (less than 12-hr) ambient O3, PM25, and CO concentrations to a variety of adverse health effects, few studies have characterized short-term exposures to these air pollutants, in part due to the lack of sensitive, accurate, and precise sampling technologies. In this paper, we present results from the laboratory and field evaluation of several new (or modified) samplers used in the “roll-around” system (RAS), which was developed to measure 1-hr O3, PM25, and CO exposures simultaneously. All the field evaluation data were collected during two sampling seasons: the summer of 1998 and the winter of 1999.

To measure 1-hr O3 exposures, a new active O3 sampler was developed that uses two nitrite-coated filters to measure O3 concentrations. Laboratory chamber tests found that the active O3 sampler performed extremely well, with a collection efficiency of 0.96 that did not vary with temperature or relative humidity (RH). In field collocation comparisons with a reference UV photometric monitor, the active O3 sampler had an effective collection efficiency ranging between 0.92 and 0.96 and a precision for 1-hr measurements ranging between 4 and 6 parts per billion (ppb). The limits of detection (LOD) of this method were 9 ppb-hr for the chamber tests and ~16 ppb-hr for the field comparison tests.

PM2.5 and CO concentrations were measured using modified continuous monitors—the DustTrak and the Langan, respectively. A size-selective inlet and a Nafion dryer were placed upstream of the DustTrak inlet to remove particles with aerodynamic diameters greater than 2.5 um and to dry particles prior to the measurements, respectively. During the field validation tests, the DustTrak consistently reported higher PM2.5 concentrations than those obtained by the collocated 12-hr PM2 5 PEM samples, by approximately a factor of 2. After the DustTrak response was corrected (correction factor of 2.07 in the summer and 2.02 in the winter), measurements obtained using these methods agreed well with R2 values of 0.87 in the summer and 0.81 in the winter. The results showed that the DustTrak can be used along with integrated measurements to measure the temporal and spatial variation in PM2 5 exposures. Finally, during the field validation tests, CO concentrations measured using the Langan were strongly correlated with those obtained using the reference method when the CO levels were above the LOD of the instrument [~1 part per million (ppm)].  相似文献   
782.
ABSTRACT

Particulate matter (PM) is a ubiquitous air pollutant that has been receiving increasing attention in recent years due in part to the association between PM and a number of adverse health outcomes, including mortality and increases in emergency room visits and respiratory symptoms, as well as exacerbation of asthma and decrements in lung function.1-5 As a result, the ability to accurately sample ambient PM has become important, both to researchers and to regulatory agencies. The federal reference method for the determination of fine PM as PM2.5 in the atmosphere recommends that particle-sampling filters be conditioned and weighed in an environment with constant temperature and relative humidity (RH).6 It is also recommended that vibration, electrostatic charges, and contamination of the filters from laboratory air be minimized to reduce variability in filter weight measurements. These controls have typically been maintained in small, environmentally controlled “cleanrooms.” As an alternative to constructing an elaborate cleanroom, we have designed, and presented in this paper, an inexpensive weighing chamber to maintain the necessary level of humidity control.  相似文献   
783.
Abstract

Emission factors for selected volatile organic compounds (VOCs) and particulate emissions were developed while processing eight commercial grades of polycarbonate (PC) and one grade of a PC/acrylonitrile-butadiene-styrene (ABS) blend. A small commercial-type extruder was used, and the extrusion temperature was held constant at 304 °C. An emission factor was calculated for each substance measured and is reported as pounds released to the atmosphere/million pounds of polymer resin processed [ppm (wt/wt)]. Scaled to production volumes, these emission factors can be used by processors to estimate emission quantities from similar PC processing operations.  相似文献   
784.
Abstract

Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5) in Steubenville, OH, have decreased by more than 10 μg/m3 since the landmark Harvard Six Cities Study1 associated the city’s elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 μg/m3) was 3.4g/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for ~31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 μg/m3 to Steubenville’s mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to account for autocorrelation can lead to incorrect conclusions about statistical significance.  相似文献   
785.
Abstract

An analysis of ozone (O3) concentrations and several other air quality-related variables was performed to elucidate their relationship with visibility at five urban and semi-urban locations in the southeast United States during the summer seasons of 1980-1996. The role and impact of O3 on aerosols was investigated to ascertain a relationship with visibility. Regional trend analysis over the 1980s reveals an increase in maximum O3 concentration coupled with a decrease in visibility. However, a similar analysis for the 1990s shows a leveling-off of both O3 and visibility; in both cases, the results were not statistically significant at the 5% level. A case study of site-specific trends at Nashville, TN, followed similar trends. To better understand the relationships between O3 concentration and visibility, the analysis was varied from yearly through daily to hourly averaged values. This increased temporal resolution showed a statistically significant inverse relationship between visibility and O3. Site-specific hourly r2 values ranged from 0.02 to 0.43. Additionally, by performing back-trajectory analysis, it was found that the visibility degraded by air mass migration over polluted areas.  相似文献   
786.
Abstract

In developing countries, high levels of particle pollution from the use of coal and biomass fuels for household cooking and heating are a major cause of ill health and premature mortality. The cost and complexity of existing monitoring equipment, combined with the need to sample many locations, make routine quantification of household particle pollution levels difficult. Recent advances in technology, however, have enabled the development of a small, portable, data-logging particle monitor modified from commercial smoke alarm technology that can meet the needs of surveys in the developing world at reasonable cost. Laboratory comparisons of a prototype particle monitor developed at the University of California at Berkeley (UCB) with gravi-metric filters, a tapered element oscillating microbalance, and a TSI DustTrak to quantify the UCB particle monitor response as a function of both concentration and particle size and to examine sensor response in relation to changes in temperature, relative humidity, and elevation are presented here. UCB particle monitors showed good linearity in response to different concentrations of laboratory-generated oleic acid aerosols with a coarse (mass median diameter, 2.1 µm) and fine (mass median diameter, 0.27–0.42 µm) size distributions (average r2 = 0.997 ± 0.005). The photoelectric and ionization chamber showed a wide range of responses based on particle size and, thus, require calibration with the aerosol of interest. The ionization chamber was five times more sensitive to fine rather than coarse particles, whereas the photoelectric chamber was five times more sensitive to coarse than fine. The ratio of the response between the two sensors has the potential for mass calibration of individual data points based on estimated parameters of the size distribution. The results demonstrate the significant potential of this monitor, which will facilitate the evaluation of interventions (improved fuels, stoves, and ventilation) on indoor air pollution levels and research on the impacts of indoor particle levels on health in developing countries.  相似文献   
787.
Abstract

In this study, an interval minimax regret programming (IMMRP) method is developed for the planning of municipal solid waste (MSW) management under uncertainty. It improves on the existing interval programming and minimax regret analysis methods by allowing uncertainties presented as both intervals and random variables to be effectively communicated into the optimization process. The IMMRP can account for economic consequences under all possible scenarios without any assumption on their probabilities. The developed method is applied to a case study of long-term MSW management planning under uncertainty. Multiple scenarios associated with different cost and risk levels are analyzed. Reasonable solutions are generated, demonstrating complex tradeoffs among system cost, regret level, and system-failure risk. The method can also facilitate examination of the difference between the cost incurred with identified strategy and the least cost under an ideal condition. The results can help determine desired plans and policies for waste management under a variety of uncertainties.  相似文献   
788.
Abstract

A computer model called the Ozone Risk Assessment Model (ORAM) was developed to evaluate the health effects caused by ground-level ozone (O3) exposure. ORAM was coupled with the U.S. Environmental Protection Agency’s (EPA) Third-Generation Community Multiscale Air Quality model (Models-3/CMAQ), the state-of-the-art air quality model that predicts O3 concentration and allows the examination of various scenarios in which emission rates of O3 precursors (basically, oxides of nitrogen [NOx] and volatile organic compounds) are varied. The principal analyses in ORAM are exposure model performance evaluation, health-effects calculations (expected number of respiratory hospital admissions), economic valuation, and sensitivity and uncertainty analysis through a Monte Carlo simulation. As a demonstration of the system, ORAM was applied to the eastern Tennessee region, and the entire O3 season was simulated for a base case (typical emissions) and three different emission scenarios. The results indicated that a synergism occurs when reductions in NOx emissions from mobile and point sources were applied simultaneously. A 12.9% reduction in asthma hospital admissions is expected when both mobile and point source NOx emissions are reduced (50 and 70%, respectively) versus a 5.8% reduction caused by mobile source and a 3.5% reduction caused by point sources when these emission sources are reduced individually.  相似文献   
789.
Novel catalytic nano-sized materials based on LaCoO(x) perovskite nanoparticles incapsulated in the mesoporous matrix of zirconia were prepared, characterized by physicochemical methods and tested in complete methanol oxidation. LaCoO(x) nanoparticles were prepared inside the mesopores of ZrO(2) by decomposition of bimetallic La-Co glycine precursor complexes. The catalysts have been studied by diffuse-reflectance FTIR-spectroscopy using such probe molecules as CO, CD(3)CN and CDCl(3) to test low-coordinated metal ions. At low temperatures of decomposition of complexes (up to 400°C), low-coordinated Co(3+) ions predominate in the LaCoO(x) nanoparticles, whereas basically Co(2+) ions are found upon increasing the decomposition temperature to 600°C. The novel nano-sized perovskite catalysts exhibit a very high catalytic activity in the abatement of volatile organic compounds present in air, like methanol and light hydrocarbons.  相似文献   
790.
Soft sediments are often highly polluted as many of the toxic chemicals introduced into surface waters bind to settling particles. The resulting accumulation of pollutants in the sediments poses a risk for benthic communities. However, pollution induced changes in benthic communities have been difficult to determine when using macro-invertebrates as bioindicators, as these organisms are often absent in soft sediment. The present study therefore examined the ability of meiofaunal organisms, specifically, nematodes, to assess the ecological status of soft sediments. Over a 9-year period, nematode communities present in sediments collected from large rivers and lake Constance in Germany were studied. These sediments showed a large range of physico-chemical properties and anthropogenic contamination. After the degree of metal and organic contamination was translated into ecotoxicologically more relevant toxic units (TUs), multivariate methods were used to classify nematode taxa in species at risk (NemaSPEAR) or not at risk (NemaSPE(not)AR). This approach clearly distinguished the influence of sediment texture from that of the toxic potential of the samples and thus allowed classification of the nematode species according to their sensitivity to or tolerance of toxic stress. Two indices, expressing the proportion of species at risk within a sample (NemaSPEAR[%](metal), NemaSPEAR[%](organic)), were calculated from independent data sets obtained in field and experimental studies and showed good correlations with the toxic potential (field data) or chemical concentrations (microcosm data). NemaSPEAR[%] indices for metal and organic pollution were therefore judged to be suitable for assessing the impact of chemical contamination of freshwater soft sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号