首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16328篇
  免费   177篇
  国内免费   137篇
安全科学   416篇
废物处理   700篇
环保管理   2009篇
综合类   2619篇
基础理论   4461篇
环境理论   4篇
污染及防治   4240篇
评价与监测   1085篇
社会与环境   989篇
灾害及防治   119篇
  2022年   131篇
  2021年   113篇
  2020年   111篇
  2019年   118篇
  2018年   213篇
  2017年   248篇
  2016年   345篇
  2015年   289篇
  2014年   471篇
  2013年   1295篇
  2012年   517篇
  2011年   730篇
  2010年   644篇
  2009年   614篇
  2008年   705篇
  2007年   755篇
  2006年   626篇
  2005年   534篇
  2004年   546篇
  2003年   527篇
  2002年   528篇
  2001年   660篇
  2000年   487篇
  1999年   268篇
  1998年   186篇
  1997年   216篇
  1996年   214篇
  1995年   242篇
  1994年   249篇
  1993年   190篇
  1992年   201篇
  1991年   188篇
  1990年   208篇
  1989年   196篇
  1988年   163篇
  1987年   170篇
  1986年   159篇
  1985年   166篇
  1984年   153篇
  1983年   144篇
  1982年   138篇
  1981年   129篇
  1980年   122篇
  1979年   131篇
  1978年   106篇
  1977年   121篇
  1975年   90篇
  1974年   90篇
  1973年   99篇
  1972年   89篇
排序方式: 共有10000条查询结果,搜索用时 585 毫秒
951.
In order to evaluate the extraction of pesticide residues that are transferred to the brew during mate drinking process of P.U.1 yerba mate leaves (Ilex paraguariensis), a special device to simulate the way in which mate is drunk in Uruguay was developed. The transfer to the brew of 12 organophosphates, 5 synthethic pyrethroids and one organochlorine pesticide from spiked samples was studied. The relationship between the transfer data thus obtained and physicochemical properties like water solubility (Ws), octanol-water coefficient (Kow) and Henry's constant (H) was evaluated. The extractability of the pesticide residues from yerba mate can be correlated with log Ws and log Kow. These transfer values allowed the calculation of ARLs (acceptable residue level) for the pesticides following Food and Agriculture Organization (FAO), World Health Organizaion (WHO) guidelines. These results can help the future establishment of maximum residue levels (MRLs).  相似文献   
952.
Four plant species (oilseed rape, Brassica napus L.; red clover, Trifolium pratense L.; ryegrass, Lolium perenne L.; and tomato, Lycopersicon esculentum L.) were tested on ten soils varying widely in soil properties to assess molybdenum (Mo) toxicity. A larger range (66-fold-609-fold) of added Mo concentrations resulting in 50% inhibition of yield (ED50) was found among soils than among plant species (2-fold-38-fold), which illustrated that the soils differed widely in the expression of Mo toxicity. Toxicity thresholds based on soil solution Mo narrowed the variation among soils compared to thresholds based on added Mo concentrations. We conclude that plant bioavailability of Mo in soil depends on Mo solubility, but this alone did not decrease the variability in observed toxicity enough to be used in risk assessment and that other soil properties influencing Mo toxicity to plants need to be considered.  相似文献   
953.

Background, aim, and scope  

Polybrominated diphenyl ethers (PBDEs) and their metabolites are toxic to animals, and concentrations of the PBDEs metabolites can exceed those of the parent materials. But no information was available on concentrations of PBDEs metabolites in the lower Yangtze River in the region around Jiangsu Province of China, which is heavily urbanized and industrialized area. The aims of this study were to determine whether PBDEs and their methoxylated PBDEs (MeO-PBDEs) were accumulated in Coilia sp. in this area and to investigate the potential sources for these two kinds of brominated organic pollutants.  相似文献   
954.
Measurements of OH, H2SO4, and MSA at South Pole (SP) Antarctica were recorded as a part of the 2003 Antarctic Chemistry Investigation (ANTCI 2003). The time period 22 November, 2003–2 January, 2004 provided a unique opportunity to observe atmospheric chemistry at SP under both natural conditions as well as those uniquely defined by a solar eclipse event. Results under natural solar conditions generally confirmed those reported previously in the year 2000. In both years the major chemical driver leading to large scale fluctuations in OH was shifts in the concentration levels of NO. Like in 2000, however, the 2003 observational data were systematically lower than model predictions. This can be interpreted as indicating that the model mechanism is still missing a significant HOx sink reaction(s); or, alternatively, that the OH calibration source may have problems. Still a final possibility could involve the integrity of the OH sampling scheme which involved a fixed building site. As expected, during the peak in the solar eclipse both NO and OH showed large decreases in their respective concentrations. Interestingly, the observational OH profile could only be approximated by the model mechanism upon adding an additional HOx radical source in the form of snow emissions of CH2O and/or H2O2. This would lead one to think that either CH2O and/or H2O2 snow emissions represent a significant HOx radical source under summertime conditions at SP. Observations of H2SO4 and MSA revealed both species to be present at very low concentrations (e.g., 5 × 105 and 1 × 105 molec cm?3, respectively), but similar to those reported in 2000. The first measurements of SO2 at SP demonstrated a close coupling with the oxidation product H2SO4. The observed low concentrations of MSA appear to be counter to the most recent thinking by glacio-chemists who have suggested that the plateau's lower atmosphere should have elevated levels of MSA. We speculate here that the absence of MSA may reflect efficient atmospheric removal mechanisms for this species involving either dynamical and/or chemical processes.  相似文献   
955.
An integrated exposure model was developed that estimates nitrogen dioxide (NO(2)) concentration at residences using geographic information systems (GIS) and variables derived within residential buffers representing traffic volume and landscape characteristics including land use, population density and elevation. Multiple measurements of NO(2) taken outside of 985 residences in Connecticut were used to develop the model. A second set of 120 outdoor NO(2) measurements as well as cross-validation were used to validate the model. The model suggests that approximately 67% of the variation in NO(2) levels can be explained by: traffic and land use primarily within 2 km of a residence; population density; elevation; and time of year. Potential benefits of this model for health effects research include improved spatial estimations of traffic-related pollutant exposure and reduced need for extensive pollutant measurements. The model, which could be calibrated and applied in areas other than Connecticut, has importance as a tool for exposure estimation in epidemiological studies of traffic-related air pollution.  相似文献   
956.
Land-use regression models have increasingly been applied for air pollution mapping at typically the city level. Though models generally predict spatial variability well, the structure of models differs widely between studies. The observed differences in the models may be due to artefacts of data and methodology or underlying differences in source or dispersion characteristics. If the former, more standardised methods using common data sets could be beneficial. We compared land-use regression models for NO2 and PM10, developed with a consistent protocol in Great Britain (GB) and the Netherlands (NL).Models were constructed on the basis of 2001 annual mean concentrations from the national air quality networks. Predictor variables used for modelling related to traffic, population, land use and topography. Four sets of models were developed for each country. First, predictor variables derived from data sets common to both countries were used in a pooled analysis, including an indicator for country and interaction terms between country and the identified predictor variables. Second, the common data sets were used to develop individual baseline models for each country. Third, the country-specific baseline models were applied after calibration in the other country to explore transferability. The fourth model was developed using the best possible predictor variables for each country.A common model for GB and NL explained NO2 concentrations well (adjusted R2 0.64), with no significant differences in intercept and slopes between the two countries. The country-specific model developed on common variables for NL but not GB improved the prediction.The performance of models based upon common data was only slightly worse than models optimised with local data. Models transferred to the other country performed substantially worse than the country-specific models. In conclusion, care is needed both in transferring models across different study areas, and in developing large inter-regional LUR models.  相似文献   
957.
To quantify the possible sources of the high ambient ozone concentration in the low troposphere over Taiwan, ozone sounding data from a two-year intensive field measurement program conducted in April and early May of 2004 and 2005 in northern Taiwan has been examined. We found that the vertical ozone distributions and occurrence of enhanced ozone in the lower troposphere (below 6 km) mainly resulted from (1)Type NE: the long-range transport of ozone controlled by the prevailing northeasterly winds below 2 km, (2)Type LO: the local photochemical ozone production process, and (3)Type SW: the strong southwest/westerly winds aloft (2–6 km). In the boundary layer (BL), where Asian continental outflow prevails, the average profile for type NE is characterized by a peak ozone concentration of nearly 65 ppb at about 1500 m altitude. For type LO, high ozone concentration with an average ozone concentration greater than 80 ppb was also found in the BL in the case of stagnant atmospheric and sunny weather conditions dominated. For type SW, significant ozone enhancement with average ozone concentration of 70–85 ppb was found at around 4 km altitude. It is about 10 ppb greater than that of the types NE and LO at the same troposphere layer owing to the contribution of the biomass burning over Indochina. Due to Taiwan's unique geographic location, the complex interaction of these ozone features in the BL and aloft, especially features associated with northeasterly and south/southwesterly winds, have resulted in complex characteristics of ozone distributions in the lower troposphere over northern Taiwan.  相似文献   
958.
It is commonly assumed that atmospheric oxidation of hydrocarbon particles or hydrocarbon coatings on particles leads to polar products and increased water uptake, altering atmospheric visibility and increasing the likelihood they will act as cloud condensation nuclei (CCN). We show here through laboratory experiments that increased water uptake depends on the 3-dimensional structure of the particles. Laboratory studies of particles formed during ozonolysis of surface-bound alkenes, present as terminally unsaturated self-assembled monolayers (C8= SAM) on a silica substrate, were carried out at room temperature and 1 atm pressure. SAMs were exposed to ~1013 O3 molecules cm?3 for 40 min and resultant particles were analyzed using single particle Fourier transform infrared micro-spectroscopy (micro-FTIR) and secondary ion mass spectroscopy (SIMS). Spectroscopy results show that –COOH and other polar groups are formed but are buried inside a hydrophobic shell, consistent with earlier observations (McIntire et al., 2005, Moussa et al., 2009) that water uptake does not increase after reaction of the terminal alkene with O3. These insights into the 3-D structure of particles formed on oxidation have important implications for the ability of secondary organic aerosols to act as CCN. In addition, the nature of the surface of the particles is expected to determine their uptake into biological systems such as the surface of the lungs.  相似文献   
959.
A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1–10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) “Supersite” shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m?3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m?3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m?3 (a factor of 10), 0.4 μg m?3, and 0.6 μg m?3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.  相似文献   
960.
This paper describes a study of local biogenic volatile organic compounds (BVOC) emissions from the Hong Kong Special Administrative Region (HKSAR). An improved land cover and emission factor database was developed to estimate Hong Kong emissions using MEGAN, a BVOC emission model developed by Guenther et al. (2006). Field surveys of plant species composition and laboratory measurements of emission factors were combined with other data to improve existing land cover and emission factor data. The BVOC emissions from Hong Kong were calculated for 12 consecutive years from 1995 to 2006. For the year 2006, the total annual BVOC emissions were determined to be 12,400 metric tons or 9.82 × 109 g C (BVOC carbon). Isoprene emission accounts for 72%, monoterpene emissions account for 8%, and other VOCs emissions account for the remaining 20%. As expected, seasonal variation results in a higher emission in the summer and a lower emission in the winter, with emission predominantly in day time. A high emission of isoprene occurs for regions, such as Lowest Forest-NT North, dominated by broadleaf trees. The spatial variation of total BVOC is similar to the isoprene spatial variation due to its high contribution. The year to year variability in emissions due to weather was small over the twelve-year period (?1.4%, 2006 to 1995 trendline), but an increasing trend in the annual variation due to an increase in forest land cover can be observed (+7%, 2006 to 1995 trendline). The results of this study demonstrate the importance of accurate land cover inputs for biogenic emission models and indicate that land cover change should be considered for these models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号