首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   7篇
  国内免费   7篇
安全科学   5篇
废物处理   20篇
环保管理   29篇
综合类   18篇
基础理论   41篇
污染及防治   78篇
评价与监测   36篇
社会与环境   20篇
灾害及防治   4篇
  2023年   9篇
  2022年   17篇
  2021年   15篇
  2020年   3篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   8篇
  2014年   11篇
  2013年   36篇
  2012年   10篇
  2011年   13篇
  2010年   25篇
  2009年   4篇
  2008年   8篇
  2007年   4篇
  2006年   8篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   3篇
  1992年   2篇
  1988年   1篇
  1985年   1篇
  1963年   3篇
  1962年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
151.
This paper represents an effort to study the bond characteristics of plain and noded bamboo splints embedded in cement-stabilised rammed earth (CSRE) blocks. A series of CSRE pullout test specimens and two species of bamboo, namely Melocanna Baccifera and Bambusa Balcooa having an average tensile strength of 384 and 310 MPa, respectively, were fabricated using 4–10% Portland cement. These bamboo species are commonly available and widely used for construction in the north-eastern part of India. Besides considering the effects of soil strength, cement content, splint size and type on bond force and slip, the effect of embedded area was also briefly considered as part of the test programme. The test result showed that pullout bond resistance is correlated to rammed earth compressive strength, splint size and type, and embedded area.  相似文献   
152.
Polyetheramide(PEtA) resin was synthesized by the condensation polymerization of N,N-bis(2-hydroxy ethyl) linseed oil fatty amide diol (HELA) with resorcinol. It was further treated with different percentage of toluylene 2-4-diisocyanate (TDI) to obtain the urethane modified polyetheramide resins (UPEtA). The structural elucidation of PEtA and urethane modified polyetheramide(UPEtA) were carried out by FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. These analyses confirm the formation of PEtA and UPEtA. Physico-chemical and physico-mechanical analysis were performed by standard laboratory methods. The resin composition UPEtA-24 showed best physico-mechanical properties with scratch hardness 2.0 kg, impact resistance 150 lb/in. and good bending ability. The thermal stability and curing behavior of polymers were respectively studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis shows that these coatings can be used safely upto 190 °C. The coatings of UPEtA resins were prepared on mild steel strips. The anticorrosive behavior of UPEtA coatings were investigated in acid, alkali, water and xylene. All the coatings exhibit good chemical resistance performance in acid, alkali, saline and organic solvents, while the resin UPEtA-24 shows the best performance.  相似文献   
153.
This investigation was aimed to find out appropriate strategy against antibiotic resistant bacterial fish pathogen, F. columnare. This pathogen was found persistently associated with fishes causing columnaris disease and ensuing mass mortality in hatchery and culture system of Sub - Himalayan region. Nine lytic F. columnare phages (FCP1 - FCP9) specific to its fifteen isolates were isolated from the water and bottom sediments of various geo-climatic regions of North India. The F. columnare phage FCP1 (made of hexagonal head and non contractile long tail belonging to family Podovariedae, a member of DNA virus) exhibited broader host range to lyse 9 out of 15 isolates of F. columnare. Therapeutic ability of FCP1 phage was assessed in C. batrachus inoculated intramuscularly (im) with virulent bacterial isolate FC8 and post inoculated (PI) with FCP1 phage (@ 10(8) : 10(6):: cfu : pfu) through intramuscular (im), immersion (bath) and oral (phage impregnated feed) treatment. Significant (p < 0.001) reduction (less than 10(-3) cfu ml(-1)) in host bacterium in the sera, gill, liver and kidney of challenged fishes was noted after 6 hr of phage treatment. Quantum of phage played a significant role in bringing down bacterial population as in the sera of dose 1 (@ 4.55 x 10(6) pfu ml(-1)) and dose 2 (@ 9.15 x 10(6) pfu ml(-1)) treated fishes mean log10 cfu value reduced by 3 logs (58.39%) and 5 logs (73.77%) at 96 hr, respectively. Phage treatment led to disappearance of gross symptoms, negative bacteriological test, detectable phage and 100% survival in experimentally infected C. batrachus. Result of this study provides evidence of profound lytic impact of FCP1 phage and represents its interesting therapeutic importance against antibiotic resistant F. columnare.  相似文献   
154.
The study was conducted on 20 vegetables including leafy, root, modified stem, and fruity vegetables like bitter gourd, jack fruit, french-bean, onion, colocassia, pointed gourd, capsicum, spinach, potato, fenugreek seeds, carrot, radish, cucumber, beetroot, brinjal, cauliflower, cabbage, tomato, okra, and bottle gourd. Forty-eight pesticides including 13 organochlorines (OCs), 17 organophosphates (OPs), 10 synthetic pyrethriods (SPs), and eight herbicides (H) pesticides were analyzed. A total number of 60 samples, each in triplicates, were analyzed using Quick, Easy, Cheap, Effective, Rugged, and Safe method. The quantification was done by GC-ECD/NPD. The recovery varies from 70.22% to 96.32% with relative standard deviation (RSD) of 15%. However the limit of detection ranged from 0.001?C0.009 mg kg???1 for OCs, SPs, OPs, and H, respectively. Twenty-three pesticides were detected from total 48 analyzed pesticides in the samples with the range of 0.005?C12.35 mg kg???1. The detected pesticides were: ??-HCH, Dicofol, ??-Endosulfan, Fenpropathrin, Permethrin-II, ??-cyfluthrin-II, Fenvalerate-I, Dichlorvos, Dimethoate, Diazinon, Malathion, Chlorofenvinfos, Anilophos, and Dimethachlor. In some vegetables like radish, cucumber, cauliflower, cabbage, and okra, the detected pesticides (??-HCH, Permethrin-II, Dichlorvos, and Chlorofenvinfos) were above maximum residues limit (MRL) (PFA 1954). However, in other vegetables the level of pesticide residues was either below detection limit or MRL.  相似文献   
155.
A visible light-induced, Cu-doped BiVO_4 photocatalyst was synthesized by a microwave hydrothermal method. The photocatalytic efficiency was investigated in the degradation of model water pollutants like Methylene Blue(dye) and ibuprofen(pharmaceuticals), as well as the inactivation of Escherichia coli(bacteria). The Cu-doped BiVO4 samples showed better efficiency than undoped BiVO_4, and the 1 wt.% Cu-doped BiVO_4 sample showed the best efficiency. The degradation of Methylene Blue reached 95%, while the degradation of ibuprofen reached 75%, and the inactivation of E. coli reached 85% in irradiation with visible light. The appearance of additional absorption band shoulders and widening of the optical absorption in the visible range makes the prepared powder an efficient visible light-driven photocatalyst. Moreover, the formation of an in-gap energy state just above the valance band as determined by density functional theory(DFT) first principle calculation, facilitates the wider optical absorption range of the doped system. Similarly, this in-gap energy state also acts as an electron trap, which is favorable for the efficient separation and photoexcited charge carriers' transfer process. The formation of oxygen vacancies due to doping also improved the separation of the charge carrier, which promoted the trapping of electrons and inhibited electron hole recombination, thus increasing the photocatalytic activity. No decrease in the efficiency of the 1 wt.% Cu-doped BiVO_4 photocatalyst in the degradation of ibuprofen over three consecutive cycles revealed the stability of the photocatalyst towards photocorrosion. These findings highlight the multifunctional applications of Cu-doped BiVO_4 in wastewater containing multiple pollutants.  相似文献   
156.
Environmental Science and Pollution Research - Mutagens present in the environment manifest toxic effects and are considered as serious threat for human health and healthcare. Recent reports reveal...  相似文献   
157.
Environmental Science and Pollution Research - Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS)...  相似文献   
158.

A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.

  相似文献   
159.
Environmental Science and Pollution Research - Coronavirus disease 2019 (COVID-19) is an infectious disease associated with the respiratory system caused by the SARS-CoV-2 virus. The aim of this...  相似文献   
160.

The availability of drinkable water, along with food and air, is a fundamental human necessity. Because of the presence of higher amounts of salt and pollution, direct use of water from sources such as lakes, sea, rivers, and subsurface water reservoirs is not normally suggested. Solar is still a basic technology that can use solar energy to transform accessible waste or brackish water into drinkable water. Exergy analysis is a strong inferential technique for evaluating the performance of thermal systems. Exergy is becoming more popular as a predictive tool for analysis, and there is a rising interest in using it. In this paper, performance analysis on the aspect of energy and exergy from the proposed solar still (PSS) (conventional solar still with the photovoltaic modules-AC heater) was analyzed on three different water depths (Wd) conditions (1, 2, and 3 cm). Using a solar still with an electric heater, the daily potable water production was found as 8.54, 6.37, and 4.43 kg, for the variations in water depth (Wd) of 1, 2, and 3 cm respectively. The energy and exergy efficiency of the PSS at the Wd of 1, 2, and 3 cm were 75.67, 51.45, and 37.21% and 5.08, 2.29, and 1.03%, respectively. At 1 cm Wd, PSS produced the maximum freshwater yield as compared to the other two water depths. When the Wd is increased from 1 to 2 cm and from 1 to 3 cm, the yield is decreased up to 27.3 and 52.7%, respectively. Similarly, the energy and exergy efficiency is decreased up to 36.8 and 53.2% and 50.4 and 80.6%, respectively. The water cost of the modified solar still is calculated as 0.028 $/kg for the least water thickness.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号