首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   3篇
  国内免费   22篇
安全科学   29篇
废物处理   65篇
环保管理   59篇
综合类   46篇
基础理论   119篇
污染及防治   283篇
评价与监测   61篇
社会与环境   55篇
灾害及防治   5篇
  2023年   36篇
  2022年   89篇
  2021年   74篇
  2020年   32篇
  2019年   27篇
  2018年   35篇
  2017年   38篇
  2016年   33篇
  2015年   21篇
  2014年   34篇
  2013年   53篇
  2012年   32篇
  2011年   25篇
  2010年   17篇
  2009年   34篇
  2008年   16篇
  2007年   21篇
  2006年   21篇
  2005年   16篇
  2004年   14篇
  2003年   5篇
  2002年   13篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1987年   2篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有722条查询结果,搜索用时 346 毫秒
331.
Failaka Island is one of the most important islands belonging to the State of Kuwait. With the Iraqi invasion of Kuwait on 2 August 1990, most of the activies on Failaka Island were destroyed. After the liberation of Kuwait, the Kuwaiti government decided to reconstruct the island for touristic and recreational purposes. Thus, a coastal development plan was needed. The presented study is an attempt to address the coastal zone management of the island. Based on the overall geomorphological features of the island, the coast was classified into four coastal zones. The wave and tidal conditions were identified around the island. The major items controlling the coastal development were specified. Accordingly, a detailed coastal zone management map for future development was developed. The overall goal was to provide decision-makers with guidelines for the future development of the island.  相似文献   
332.

Production of Scenedesmus sp. biomass in chicken slaughterhouse wastewater (CSWW) is a promising alternative technique for commercial culture medium due to the high nutritional content of the generated biomass to be used as fish feeds. The current work deals with optimising of biomass production in CSWW using response surface methodology (RSM) as a function of two independent variables, namely temperature (10–30 °C) and photoperiod (6–24 h). The potential application of biomass yield as fish feeds was evaluated based on carbohydrate, protein and lipid contents. The results revealed that the best operating parameters for Scenedesmus sp. biomass production with high contents of carbohydrates, proteins and lipids were determined at 30 °C and after 24 h. The actual and predicted values were 2.47 vs. 3.09 g, 1.44 vs. 1.27 μg/mL, 29.9 vs. 31.60% and 25.75 vs. 28.44%, respectively. Moreover, the produced biomass has a high concentration of fatty acid methyl ester (FAME) as follows: 35.91% of C15:1; 17.58% of C24:1 and 14.11% of C18:1N9T. The biomass yields have 7.98% of eicosapentaenoic acid (EPA, C20:5N3) which is more appropriate as fish feeds. The Fourier transform infrared (FTIR) analysis of biomass revealed that the main functional groups included hydroxyl (OH), aldehyde (=C–H), alkanes and acyl chain groups. Scanning electron micrograph (SEM) and energy-dispersive X-ray spectroscopic analysis (EDS) indicated that the surface morphology and element distribution in biomass produced in BBM and CSWW were varied. The findings have indicated that the biomass produced in CSWW has high potential as fish feeds.

  相似文献   
333.

A gas‐liquid‐chromatographic procedure for the quantitative determination of authentic carazolol and carazolol in tablets (Conducton(R)?) has been described. Carazolol in tablets was extracted with absolute alcohol before injecting onto the gas Chromatograph. The concentration range adopted varied between 0.2 mg to 1.0 mg/ml of carazolol in alcohol solution. The results obtained were 97.6%±3.2 and 98.4%±2.6 for the stated and added amounts respectively.  相似文献   
334.
Environmental Science and Pollution Research - Brown seaweeds are rich in polysaccharides, such as fucoidan (FUC) which has shown beneficial effects in several medical conditions. The aim of the...  相似文献   
335.
336.
Environmental Science and Pollution Research - Global warming and the associated climate changes are predictable. They are enhanced by burning of fossil fuels and the emission of huge amounts of...  相似文献   
337.
The efficacy of the oxidation pond on the outskirts of the 10th of Ramadan, the main industrial city, in Egypt was examined. Samples of wastewater collected from the inlet and the outlet were screened for some priority pollutants. Acenaphthene and fluorene were the most frequently detected polycyclic aromatic hydrocarbons, while dimethyl phthalate was the most frequently detected phthalate ester. The spectrum of pollutants, their concentrations and frequencies were similar in the inlet and the outlet, indicating an inferior mineralization capability of the pond. Several degradative bacterial strains were isolated from the pond and grown on M56 minimal media supplemented with different pollutants as the carbon source. The efficacy of pure and mixed cultures to break down fluorene, the most frequently detected pollutant was examined. Fluorene degradation was fast in the first 10 days, then followed by a slow phase. Mixed culture had a higher rate of fluorene degradation in comparison to pure cultures. High performance liquid chromatography analysis of fluorene degradation showed three degradative metabolites. But GC/MS analysis detected one compound, identified as acetamide. The present work has indicated the poor efficacy of the pond. Lack of primary treatment of industrial effluent at factory level, coupled with shock loads of toxicants that may damage the microorganisms and their degradative capabilities are presumably main factors behind such inferior performance. Moreover, the type of pollutants discharged into the pond tend to fluctuate and change depending on the rate from the factories discharge and work shifts. Such irregular feeding of persistent pollutants may have led to a wash out of specialized strains of bacteria capable to degrade such persistent pollutants.  相似文献   
338.
Energy and environment are major global issues inducing environmental pollution problems. Energy generation from conventional fossil fuels has been identified as the main culprit of environmental quality degradation and environmental pollution. In order to address these issues, nanotechnology plays an essential role in revolutionizing the device applications for energy conversion and storage, environmental monitoring, as well as green engineering of environmental friendly materials. Carbon nanotubes and their hybrid nanocomposites have received immense research attention for their potential applications in various fields due to their unique structural, electronic and mechanical properties. Here, we review the applications of carbon nanotubes (1) in energy conversion and storage such as in solar cells, fuel cells, hydrogen storage, lithium ion batteries and electrochemical supercapacitors, (2) in environmental monitoring and wastewater treatment for the detection and removal of gas pollutants, pathogens, dyes, heavy metals and pesticides and (3) in green nanocomposite design. Integration of carbon nanotubes in solar and fuel cells has increased the energy conversion efficiency of these energy conversion applications, which serve as the future sustainable energy sources. Carbon nanotubes doped with metal hydrides show high hydrogen storage capacity of around 6?wt% as a potential hydrogen storage medium. Carbon nanotubes nanocomposites have exhibited high energy capacity in lithium ion batteries and high specific capacitance in electrochemical supercapacitors, in addition to excellent cycle stability. High sensitivity and selectivity towards the detection of environmental pollutants are demonstrated by carbon nanotubes based sensors, as well as the anticipated potentials of carbon nanotubes as adsorbent to remove environmental pollutants, which show high adsorption capacity and good regeneration capability. Carbon nanotubes are employed as reinforcement material in green nanocomposites, which is advantageous in supplying the desired properties, in addition to the biodegradability. This article presents an overview of the advantages imparted by carbon nanotubes in electrochemical devices of energy applications and green nanocomposites, as well as nanosensor and adsorbent for environmental protection.  相似文献   
339.
Adaptive cluster sampling (ACS) has received much attention in recent years since it yields more precise estimates than conventional sampling designs when applied to rare and clustered populations. These results, however, are impacted by the availability of some prior knowledge about the spatial distribution and the absolute abundance of the population under study. This prior information helps the researcher to select a suitable critical value that triggers the adaptive search, the neighborhood definition and the initial sample size. A bad setting of the ACS design would worsen the performance of the adaptive estimators. In particular, one of the greatest weaknesses in ACS is the inability to control the final sampling effort if, for example, the critical value is set too low. To overcome this drawback one can introduce ACS with clusters selected without replacement where one can fix in advance the number of distinct clusters to be selected or ACS with a stopping rule which stops the adaptive sampling when a predetermined sample size limit is reached or when a given stopping rule is verified. However, the stopping rule breaks down the theoretical basis for the unbiasedness of the ACS estimators introducing an unknown amount of bias in the estimates. The current study improves the performance of ACS when applied to patchy and clustered but not rare populations and/or less clustered populations. This is done by combining the stopping rule with ACS without replacement of clusters so as to further limit the sampling effort in form of traveling expenses by avoiding repeat observations and by reducing the final sample size. The performance of the proposed design is investigated using simulated and real data.  相似文献   
340.
The use of an abundant and widely distributed seagrass species, Posidonia oceanica, as a biosorbent for the direct dye Yellow 44 was successfully shown. The studies were performed on the single dyestuff dissolved in water and in a dyebath containing agents commonly used in the textile industry, i.e. a surfactant (Lavotan TBU), a sequestring agent (Meropan DPE), a softening agent (Eurosoft CI10) and a salt (NaCl). The colour reduction results showed that P. oceanica was found to be more efficient for removal of Yellow 44 from an aqueous solution (162 mg g?1) than from a dyebath solution (135 mg g?1), according to the Langmuir isotherm model. For the single dyestuff sorption, Fourier transform infrared and X-ray photoelectron spectroscopy studies highlighted chemical sorption between the dye alcohol function and the sorbent acid function. The chemical oxygen demand removal percentages were found to be 54.9 and 76.6% for Yellow 44 dissolved in aqueous solution and in dyebath solution, respectively. This confirmed the both sorption of the chemical auxiliaries and the dye on P. oceanica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号