排序方式: 共有28条查询结果,搜索用时 0 毫秒
21.
A contamination of off-site aquatic environments with pesticides has been observed in the tropics, yet only sparse information exists about pesticide fate in such ecosystems. The objective of our semi-field study was to elucidate the fate of alachlor, atrazine, chlorpyrifos, endosulfan, metolachlor, profenofos, simazine, and trifluralin in the aqueous environment of the Pantanal wetland (MT, Brazil). To this aim, water and water/sediment microcosms of two sizes (0.78 and 202 l) were installed in the outskirts of this freshwater lagoon environment and pesticide dissipation was monitored for up to 50 d after application. The physical-chemical water conditions that developed in the microcosms were reproducible among field replicates for both system sizes. Pesticide dissipation was substantially enhanced for most pesticides in small microcosms relative to the large ones (reduced DT(50) by a factor of up to 5.3). The presence of sediment in microcosms led to increased persistence of chlorpyrifos, endosulfan, and trifluralin in the test systems, while for polar pesticides (alachlor, atrazine, metolachlor, profenofos, and simazine) a lesser persistence was observed. Atrazine, simazine, metolachlor, and alachlor were identified as the most persistent pesticides in large water microcosms (DT(50) > or = 47 d); in large water/sediment systems endosulfan beta, atrazine, metolachlor, and simazine showed the slowest dissipation (DT(50) > or = 44 d). A medium-term accumulation in the sediment of tropical ecosystems can be expected for chlorpyrifos and endosulfan isomers (11-35% of applied amount still extractable at 50 d after application). We conclude that the persistence of the studied pesticides in aquatic ecosystems of the tropics is not substantially lower than during summer in temperate regions. 相似文献
22.
The paper is about the accurate (i.e. unbiased and precise) and efficient estimation of structural indices in forest stands. We present SIAFOR, a computer programme for the calculation of four nearest-neighbour indices, which describe the spatial arrangement of tree positions, the distribution pattern of species, and the size differentiation between trees. The study uses SIAFOR as a sampling simulator in eight completely stem-mapped forest stands of varying area and structural complexity. We statistically evaluate two sample types (distance and plot sampling), comparing sampling error, bias and minimum sample size for index estimation. We introduce the concepts of measurement expansion factor (MEF) and design expansion factor (DEF) for the technical evaluation of sample type efficiency (optimal sample type). Results indicate that sampling error can reach high levels and that minimum sample sizes for index estimation often amply exceed the limit of 20% of tree density or 20 trees per species per hectare, that we set as the highest feasible sample size in normal situations. We found clear feasibility limits (in terms of minimal tree densities and reachable accuracy levels) for the estimation of all investigated indices. Generally, equal or higher sample sizes are needed for plot sampling than for distance sampling to reach equal accuracy levels. Nevertheless, plot sampling resulted more efficient for the estimation of tree size differentiation at low to medium accuracy levels. For all other investigated indices distance sampling resulted more efficient than plot sampling. Minimum sample size increases with accuracy and is negatively correlated with tree density. At a given accuracy level minimum sample size is highest for the estimation of relative mingling and lowest for tree size differentiation; furthermore it is generally lower in large stands than in small ones. Because of the consistency of our conclusions in all of the investigated stands, we think they apply in most stands of similar area (between 1 and 10 ha) and species diversity (not more than four species). 相似文献
23.
24.
25.
A crucial challenge for including biophysical photosynthesis–transpiration models into complex crop growth models is to integrate the plasticity of photosynthetic processes that is related to factors like nitrogen (N) content, age, and rank of leaves, or to the adaptation of plants to growth temperature (Tg). Here we present a new version of the combined photosynthesis-stomatal conductance model LEAFC3-N [Müller, J., Wernecke, P., Diepenbrock, W., 2005. LEAFC3-N: a nitrogen sensitive extension of the CO2 and H2O gas exchange model LEAFC3 parameterised and tested for winter wheat (Triticum aestivum L.). Ecological Modelling 183, 183–210.] that was revised, extended and completely re-parameterised for barley (Hordeum vulgare L.) with special regard for these factors to facilitate the use of the model in ecophysiological studies and in crop modelling. The analysis is based on novel comprehensive data on photosynthetic CO2 and light response curves measured at two oxygen concentrations and different temperatures on leaves of barley (H. vulgare L.) differing in leaf N and chlorophyll content. Plants were grown in climatic chambers or in the field at different N and Tg.We thoroughly revised the existing and introduced new nitrogen relations for key model parameters that account for a linear increase with leaf N of Vmax, Jmax, Tp, and Rdmax (maximum rates of carboxylation, electron transport, triose phosphate export, and mitochondrial respiration), a saturation-type increase of φ (quantum yield of electron transport), and a non-linear decrease of θ and m (curvature of the light dependence of electron transport rate, scaling factor of the stomata model). The adaptation of photosynthetic characteristics to Tg was included into the model by linear relations that were observed between Tg and the activation energy ΔHa of the temperature response characteristics of Vmax, Jmax, and Tp as well as of the nitrogen dependency of these characteristics. Based on an analysis of diurnal time courses of gas exchange rates it was found necessary including not only the relation between leaf water potential (Ψ) and stomatal conductance as used originally in LEAFC3, but additional effects on Vmax and Jmax. With the above-listed extensions, the model was capable to reproduce the observed plasticity and the recorded diurnal time courses of gas exchange rates fairly well. Thus, we conclude that the new model version can be used under a broad range of conditions, both for ecophysiological studies and as a submodel of crop growth models. The results presented here for barley will facilitate adapting photosynthesis models like LEAFC3-N to other C3-species as well. The modelling of the effects of drought stress should be further elaborated in future based on more specific experiments. 相似文献
26.
The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were <150 g C ha(-1) from co-fermentation products and seemed to result from dissolved CH4. Only in the grassland experiment were emissions from unfermented slurry significantly higher, with wetter weather conditions probably promoting CH4 production. Nitrous oxide emission was significantly increased by injection on arable and grassland sites two- and threefold, respectively. Ammonia emissions were smallest after injection or trail shoe application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry. 相似文献
27.
28.
E. Meire A. Frankl A. De Wulf Mitiku Haile J. Deckers J. Nyssen 《Regional Environmental Change》2013,13(3):717-737
Quantitative research on land use and land cover (LUC) in Africa usually addresses the second half of the twentieth century, by using remote sensing data. Terrestrial photographs, which are available since 1868 in Ethiopia, are seldom used in a quantitative way. This paper presents a methodology that allows to produce land use and land cover (LUC) maps on the basis of old terrestrial photographs. Therefore, land use and land cover was investigated on historical and present-day photographs, and these interpretations were warped to the horizontal plane of the map. The resulting maps allow to gain better insights into LUC changes over a period of 140 years. The results show that woody vegetation increased strongly, together with an increase in built-up area. This occurred especially at the expense of bushland. The study validates pervious findings and shows that improved land management strategies in one of the world’s most degraded areas can lead to environmental rehabilitation. 相似文献