首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1824篇
  免费   21篇
  国内免费   42篇
安全科学   26篇
废物处理   127篇
环保管理   183篇
综合类   158篇
基础理论   332篇
环境理论   2篇
污染及防治   604篇
评价与监测   328篇
社会与环境   121篇
灾害及防治   6篇
  2023年   63篇
  2022年   184篇
  2021年   123篇
  2020年   28篇
  2019年   46篇
  2018年   87篇
  2017年   96篇
  2016年   114篇
  2015年   52篇
  2014年   89篇
  2013年   189篇
  2012年   81篇
  2011年   103篇
  2010年   86篇
  2009年   74篇
  2008年   80篇
  2007年   69篇
  2006年   82篇
  2005年   42篇
  2004年   28篇
  2003年   25篇
  2002年   31篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1989年   4篇
  1988年   4篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   6篇
  1979年   3篇
  1978年   2篇
  1966年   3篇
  1965年   2篇
  1964年   2篇
  1962年   2篇
  1961年   4篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   4篇
  1953年   1篇
排序方式: 共有1887条查询结果,搜索用时 15 毫秒
941.
Environmental Science and Pollution Research - Natural products have been used to protect the skin from harmful UV radiation for decades. Due to the ecotoxicological implications of synthetic...  相似文献   
942.
There is a proactive interest in recovering water, nutrients and energy from waste streams with the increase in municipal wastewater volumes and innovations in resource recovery. Based on the synthesis of wastewater data, this study provides insights into the global and regional “potential” of wastewater as water, nutrient and energy sources while acknowledging the limitations of current resource recovery opportunities and promoting efforts to fast-track high-efficiency returns. The study estimates suggest that, currently, 380 billion m3 (m3 = 1,000 L) of wastewater are produced annually across the world which is a volume five-fold the volume of water passing through Niagara Falls annually. Wastewater production globally is expected to increase by 24% by 2030 and 51% by 2050 over the current level. Among major nutrients, 16.6 Tg (Tg = million metric ton) of nitrogen are embedded in wastewater produced worldwide annually; phosphorus stands at 3.0 Tg and potassium at 6.3 Tg. The full nutrient recovery from wastewater would offset 13.4% of the global demand for these nutrients in agriculture. Beyond nutrient recovery and economic gains, there are critical environmental benefits, such as minimizing eutrophication. At the energy front, the energy embedded in wastewater would be enough to provide electricity to 158 million households. These estimates and projections are based on the maximum theoretical amounts of water, nutrients and energy that exist in the reported municipal wastewater produced worldwide annually. Supporting resource recovery from wastewater will need a step-wise approach to address a range of constraints to deliver a high rate of return in direct support of Sustainable Development Goals (SDG) 6, 7 and 12, but also other Goals, including adaptation to climate change and efforts in advancing “net-zero” energy processes towards a green economy.  相似文献   
943.
Microplankton population of Asia’s largest coastal lagoon Chilika was studied for five major groups, bacillariophyceae, cyanophyceae, chlorophyceae, dinophyceae, rotifera, and tintinninae. The study reported presence of 233 species of microplankton whose average annual abundance was 1631 cells/l. The physicochemical parameters contributing to the spatio-temporal fluctuations in microplankton diversity, abundance, and community structure were identified as salinity, pH, DO, nitrate, and silicate. Salinity, transparency, depth, and silicate most explained the abundance of bacillariophyceae; nitrate, pH, and DO influenced cyanophyceae; salinity, transparency, and chlorophyll concentration influenced chlorophyceae; salinity, depth, and water temperature influenced dinophyceae; salinity, free CO2, and nitrate-influenced rotifers, whereas salinity, pH, DO, and depth influenced tintinnids. Biotic-abiotic relationships revealed particular preference of environmental conditions at species level in groups like bacillariophyceae, cyanophyceae, and dinophyceae. Although the lagoon is shallow, bacillariophyceae-environment interaction showed depth can be a critical factor for species like Aulocoseira sp., Amphipleura sp., and Rhophalodia sp. Species of dinoflagellates like Dinophysis caudata, Noctiluca scintillans, and Protoperidinium proliferated in lower level of silicate. Unlike other cyanophyceae species Streptococcus sp., Chroococcus sp., Diplococcus sp., Aphanocapsa sp., and Gloeocapsa sp. were negatively influenced by nitrate concentration. The study provides better scope for ecological management of the lagoon with respect to conserving biodiversity and hydrological quality of the ecosystem.  相似文献   
944.
Honey has multifaceted beneficial properties, but polluted environment and unapproved apicultural practices have led to its contamination. In this study, QuEChERS method followed by chromatographic analysis by GC-μECD/FTD and GC-MS was validated and used for determination of 24 pesticides in 100 raw honey samples from various floral origins of Northern India. Matrix-matched calibrations showed that the method was selective and linear (r2?>?0.99) with detection limit <?9.1 ng g?1 for all the studied pesticides except for monocrotophos (21.3 ng g?1). The average recoveries at different fortification levels ranged from 86.0 to 107.7% with relative standard deviation <?20%. Pesticide residues were detected in 19.0% samples, and most prevalent compounds detected were dichlorvos in 6.0% samples followed by monocrotophos (5.0%), profenofos (5.0%), permethrin (4.0%), ethion (3.0%), and lindane (3.0%) with concentrations ranging from 58.8 to 225.5, from 96.0 to 430.1, from 14.6 to 43.2, from 27.8 to 39.6, from 25.6 to 28.0, and from 19.6 to 99.2 ng g?1, respectively. Honey samples originating from cotton, sunflower, and mustard crops (33.3%) that tested positive for pesticide residues were found to be significantly higher (p?<?0.05) than the honey originating from natural and fruity vegetation (13.5%). Therefore, considering the contamination of environmental compartments due to extensive application of pesticides in the study area and their potential for subsequent transfer to honey by the expeditious bees, the results of present study proclaim that honey may be used as an indicator of environmental pollution. Further, estimated daily intakes of all contaminants were found to be at levels well below their acceptable daily intakes suggesting that consumption of honeys at current levels does not pose deleterious effects on human health. However, precautionary measures should always be taken considering the customary honey feeding in infants and cumulative effect of these chemicals in the foreseeable future.  相似文献   
945.
Biosorption process is emerging as a potential alternative for the heavy metal removal from aqueous solutions. A packed bed column containing biomaterials like papaya leaf powder and paddy straw powder was used for copper removal from aqueous solutions. The breakthrough curve was having an S-shaped profile and the breakthrough time became less with increase in initial concentration. Percentage removal of copper was around 85% and 77% for papaya leaf powder and paddy straw powder, respectively for a contact time of 120 minutes and initial concentration of 10 mg/L. A biogeocomposite material was developed to test the enhancement in adsorption using layers of non-woven geotextile material and a significant increase in adsorption was obtained. With the addition of geotextile material in between papaya powder layer and paddy straw powder, there was an average increase of 12.66% and 11.98%, respectively for the removal. A biocomposite material was developed with a mixture of the two biosorbents and the adsorption value of the biocomposite material was in between the two biosorbents. The applicability of Yoon Nelson model and Adam Bohart model were also evaluated and the most suitable model came out to be Yoon and Nelson model.  相似文献   
946.
In this study, a tailor-made biocatalyst consisting of a co-immobilized lignolytic enzyme cascade on multi-functionalized magnetic silica microspheres (MSMS) was developed. Physical adsorption was the most promising strategy for the synthesis of individual immobilized laccase (IL), immobilized versatile peroxidase (IP), as well as co-immobilized laccase (Lac) and versatile peroxidase (VP) with an enzyme activity recovery of about 79, 93, 27, and 27.5%, respectively. Similarly, the biocatalytic load of 116, 183, 23.6, and 31 U/g was obtained for IL, IP, and co-immobilized Lac and VP, respectively. The co-immobilized enzyme system exhibited better pH stability than the free and individual immobilized system by retaining more than 100% residual activity at pH 7.0 after a 150-h incubation; whereas, the thermal stability and kinetics of the co-immobilized biocatalyst were not much improved. IL and IP could be recycled for 10 cycles after which they retained 31 and 44% of their initial activities. Co-immobilized Lac and VP were reused for ten consecutive cycles at the end of which Lac activity was depleted, and 37% of VP activity was left. Free enzymes, IL, IP, co-immobilized Lac, and VP were applied to biorefinery wastewater (BRW) in a batch study to investigate the transformation of phenolic contaminants over a period of 5 days. The major classes of phenolic constituents in terms of their order of removal in a Lac-VP system was phenol >2-chlorophenol > trichlorophenol > dichlorophenol > cresols > dimethylphenol >2 methyl- 4, 6-dinitrophenol > 4-nitrophenol > tetrachlorophenols > pentachlorophenol. The free enzymes and individually immobilized enzymes resulted in 80% dephenolization in 5 days. By contrast, the co-immobilized biocatalyst provided rapid dephenolization yielding the same 80% removal within 24 h and 96% removal of phenols in 60 h after which the system stabilized, which is the major advantage of the co-immobilized biocatalyst.
? Graphical abstract
  相似文献   
947.
In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.  相似文献   
948.
The relative impacts of hunting and habitat on waterbird community were studied in agricultural wetlands of southern India. We surveyed wetlands to document waterbird community, and interviewed hunters to document hunting intensity, targeted species, and the motivations for hunting. Our results show that hunting leads to drastic declines in waterbird diversity and numbers, and skew the community towards smaller species. Hunting intensity, water spread, and vegetation cover were the three most important determinants of waterbird abundance and community structure. Species richness, density of piscivorous species, and medium-sized species (31–65 cm) were most affected by hunting. Out of 53 species recorded, 47 were hunted, with a preference for larger birds. Although illegal, hunting has increased in recent years and is driven by market demand. This challenges the widely held belief that waterbird hunting in India is a low intensity, subsistence activity, and undermines the importance of agricultural wetlands in waterbird conservation.  相似文献   
949.
In human-populated landscapes worldwide, domestic dogs (Canis lupus familiaris) are the most abundant terrestrial carnivore. Although dogs have been used for the protection of livestock from wild carnivores, they have also been implicated as predators of livestock. We used a combination of methods (field surveys, interview surveys, and data from secondary sources) to examine the patterns and factors driving livestock depredation by free-ranging dogs, as well as economic losses to local communities in a Trans-Himalayan agro-pastoralist landscape in India. Our results show that livestock abundance was a better predictor of depredation in the villages than local dog abundance. Dogs mainly killed small-bodied livestock and sheep were the most selected prey. Dogs were responsible for the majority of livestock losses, with losses being comparable to that by snow leopards. This high level of conflict may disrupt community benefits from conservation programs and potentially undermine the conservation efforts in the region through a range of cascading effects.  相似文献   
950.
A two-dimensional (2-D) model is developed to predict the torrefaction behavior of a large wet biomass particle. Although one-dimensional (1-D) model is found to be adequate for L/D ≥ 6, the necessity of using 2-D model at lower L/D ratios and higher torrefaction temperature is established. Errors up to 18% are observed in predicted mass fractions between 1-D and 2-D models. The center temperatures differed more, up to 96%, between z = 0 and z = L/2 in 2-D model which is not captured by the 1-D model. The model predictions agree well with the experimental results of the present authors and others. The evolution of the temperature profile is found to govern the mass fraction profile. At higher reactor temperature, three distinct zones are visible in the contour plots: peripheral fully torrefied zone, intermediate torrefying zone, and core with unreacted virgin biomass zone. Simulation studies show the formation of two symmetric annular hot spots at the ends, which move inward axially and subsequently merge at the center, the rate being faster for smaller L/D ratio. However, 1-D model does not provide such insight. The effects of reactor temperature, particle size, the residence time, and the initial moisture content on the torrefaction behavior are investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号