The study of extreme values and prediction of ozone data is an important topic of research when dealing with environmental problems. Classical extreme value theory is usually used in air-pollution studies. It consists in fitting a parametric generalised extreme value (GEV) distribution to a data set of extreme values, and using the estimated distribution to compute return levels and other quantities of interest. Here, we propose to estimate these values using nonparametric functional data methods. Functional data analysis is a relatively new statistical methodology that generally deals with data consisting of curves or multi-dimensional variables. In this paper, we use this technique, jointly with nonparametric curve estimation, to provide alternatives to the usual parametric statistical tools. The nonparametric estimators are applied to real samples of maximum ozone values obtained from several monitoring stations belonging to the Automatic Urban and Rural Network (AURN) in the UK. The results show that nonparametric estimators work satisfactorily, outperforming the behaviour of classical parametric estimators. Functional data analysis is also used to predict stratospheric ozone concentrations. We show an application, using the data set of mean monthly ozone concentrations in Arosa, Switzerland, and the results are compared with those obtained by classical time series (ARIMA) analysis. 相似文献
Patterns of land-use and land-cover change are usually grouped into one of two categories defined by the dominant trend: (1) deforestation resulting from expanding agriculture and (2) forest expansion, usually related to the abandonment of marginal lands. At regional scale, however, both processes can occur simultaneously even in the absence of net change. Given the focus on net change, such redistribution of agricultural and natural and seminatural lands has been generally overlooked. The interaction between agriculture modernization, human demography and complex topographic gradients of northwestern Argentina has resulted in processes of both forest recovery and deforestation, thus providing the opportunity to analyze patterns and driving forces of land-cover redistribution. We analyzed 20 years (1986–2006) of land-cover change in a subtropical watershed in relation to topographic and demographic variables. Although net forest change represented <1 %, forests redistribution affected 7 % of forest lands. There was a consistent geographic segregation of deforestation and forest recovery, with forests expanding over steep highlands and agriculture expanding over lowland irrigated areas. Population trends were not associated to forest expansion in lowlands but they explained 32 % of forest recovery in highlands. Highland forest expansion and lowland deforestation, respectively, imply conservation opportunities for humid montane forests and the environmental services they provide (e.g., watershed conservation) and threats for the conservation of dry forests and its biodiversity. Our study exemplifies the importance of land-use redistribution (rather than net change) with relevant environmental consequences at regional scale. 相似文献
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Doñana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods—analytic hierarchy process, Likert scale and equal weights—that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and even more so under an increased water scarcity scenario. 相似文献
AbstractThe presence of diethyl-phthalate (DEP), dibutyl-phthalate (DBP), butylbenzyl-phthalate (BBP), diethylhexyl-phthalate (DEHP) and diisononyl-phthalate (DINP) was determined in 295 tequila samples. They were grouped by age of maturation (white, aged, extra aged or ultra aged) and year of production (between 2013 and 2018). Gas Chromatography coupled with Mass Spectrometry was used for identification and quantification. The results showed that 65 samples (22% of the total) were phthalate free. DEP (0.13-0.27?mg/kg), BBP (0.05–2.91?mg/kg) and DINP (1.64–3.43?mg/kg) were detected in 11 (3.73%), 37 (12.54%) and 5 (1.69%) samples, respectively. But, these concentrations did not exceed the maximum permitted limits (MPL) of phthalates for alcoholic beverages. DBP (0.01–2.20?mg/kg) and DEHP (0.03–4.64?mg/kg) were detected in 96 (32.54%) and 224 (75.93%) samples, from them only 10 (3.39%) and 15 (5.08%) samples, respectively, exceeded the MPL for alcoholic beverages and they were few tequilas produced in the year 2014 or before. DEHP was the most frequent phthalate found in tequila and observed DEHP concentrations were 2-times higher in ultra aged tequilas compared to those in white tequilas. We concluded that all tequilas produced in 2015 and after, satisfied the international standards for these compounds. 相似文献
Selenium (Se) is an essential metalloid element for mammals. Nonetheless, both deficiency and excess of Se in the environment are associated with several diseases in animals and humans. Here, we investigated the interaction of Se, supplied as selenate (Se+6) and selenite (Se+4), with phosphorus (P) and sulfur (S) in a weathered tropical soil and their effects on growth and Se accumulation in Leucaena leucocephala (Lam.) de Wit. The P-Se interaction effects on L. leucocephala growth differed between the Se forms (selenate and selenite) supplied in the soil. Selenate was prejudicial to plants grown in the soil with low P dose, while selenite was harmful to plants grown in soil with high P dose. The decreasing soil S dose increased the toxic effect of Se in L. leucocephala plants. Se tissue concentration and total Se accumulation in L. leucocephala shoot were higher with selenate supply in the soil when compared with selenite. Therefore, selenite proved to be less phytoavailable in the weathered tropical soil and, at the same time, more toxic to L. leucocephala plants than selenate. Thus, it is expected that L. leucocephala plants are more efficient to phytoextract and accumulate Se as selenate than Se as selenite from weathered tropical soils, for either strategy of phytoremediation (decontamination of Se-polluted soils) or purposes of biofortification for animal feed (fertilization of Se-poor soils).
Can Gio district is located in the coastal area of Ho Chi Minh City, southern Vietnam. Discharge of wastewater from Ho Chi Minh City and neighboring provinces to the rivers of Can Gio has led to concerns about the accumulation of trace metals (As, Cu, Cr, Ni, Pb, and Zn) in the coastal sediments. The main objective of this study was to assess the distribution of As, Cu, Cr, Ni, Pb, and Zn in surface and core sediments and to evaluate the contamination status in relation to local background values, as well as the potential release of these selected trace metals from sediments to the water environment. Sediment characteristization, including determination of fine fraction, pH, organic matter, and major elements (Al, Fe, Ca, K, Mg, and S), was carried out to investigate which parameters affect the trace metal enrichment. Fine fraction and Al contents were found to be the controlling proxies affecting the distribution of trace metals while other sediment characteristics did not show any clear influence on trace metals’ distribution. Although As concentrations in the sediments were much higher compared to its reference value in other areas, the enrichment factor based on local background values suggests minor contamination of this element as well as for Cr, Cu, and Pb. Risk assessment suggested a medium to very high risk of Mn, Zn, and Ni under acidification. Of importance is also that trace metals in sediments were not easily mobilized by organic complexation based on their low extractabilities by ammonium-EDTA extraction.
The performance of phillipsite as a matrix for slow-release formulation of oxamyl [N,N-dimethyl-2-methylcarbamoyl-oxymino-2-(methylthio)acetamide] was tested. The adsorption kinetics followed a first-order law, and the adsorption isotherm fitted well in a two-surface Langmuir model, suggesting a double mechanism of interaction between oxamyl and the sorbent. The sorption mechanism, studied by FTIR, provided two fractions of oxamyl. The first one is sorbed on the mineral surface, linked by H-bonding, and the second one is constituted by a multilayer of oxamyl molecules linked by a water bridge between them. The release kinetics of oxamyl from a substratum zeolite-oxamyl also follows a first-order law, with two stages that correspond to both fractions of oxamyl previously detected. 相似文献
The soil/water partition coefficient (Kd) of hexachlorobenzene (HCB) ranged from 220 1/kg to 1800 1/kg for eight soils having a wide range of physico-chemical properties. Kd normalised to soil organic carbon (Koc) was found to be 28000 ± 4800 1/kg. Anionic surfactant dodecylsulphate (DS) present at concentrations above the critical micellar concentration (CMC) caused reductions in the apparent soil/water partition coefficient (Kd*) in the range of 3–26 times for most soils and up to 36–91 times for sandy soils. Below CMC, at environmentally relevant surfactant concentrations, Kd* was reduced by a factor of 1–13. For clay and calcareous soils significant adsorption/complexation/precipitation of DS occurred. At the lowest DS concentration this produced a two-fold increase in Kd*. At increasing DS concentrations this effect was shielded by the solubihzing effect from DS. Monomer (Kmn) and micellar (Kmc) surfactant/water partition coefficients for HCB were determined to be, 980 ± 190 1/kg and 21000 ± 1600 1/kg, respectively. 相似文献
The potential of passive air sampling devices (polyurethane foam disks) to assess the influence of local sources on the quality of the surrounding environment was investigated. DEZA Valasske Mezirici, a coal tar and mixed tar oils processing plant, and Spolana Neratovice, a chemical factory with the history of high production of organochlorinated pesticides (OCPs), were selected as the point sources of PAHs, and OCPs, respectively. Levels of PCBs, OCPs and PAHs were determined for all sampling sites and sampling periods. The study brought useful data about the air concentrations of POPs in the investigated regions. More important, it provided information on the transport and fate of POPs in the vicinity of local sources of contamination useful for the estimation of their influence. Very good capability of passive samplers to reflect temporal and spatial fluctuation in concentrations of persistent organic pollutants in the ambient air was confirmed which makes them applicable for monitoring on the local scale. 相似文献
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites. 相似文献