首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   54篇
  国内免费   10篇
安全科学   67篇
废物处理   61篇
环保管理   375篇
综合类   117篇
基础理论   415篇
环境理论   3篇
污染及防治   362篇
评价与监测   95篇
社会与环境   48篇
灾害及防治   13篇
  2023年   14篇
  2022年   21篇
  2021年   16篇
  2020年   13篇
  2019年   19篇
  2018年   32篇
  2017年   37篇
  2016年   39篇
  2015年   42篇
  2014年   36篇
  2013年   102篇
  2012年   75篇
  2011年   78篇
  2010年   58篇
  2009年   74篇
  2008年   90篇
  2007年   88篇
  2006年   93篇
  2005年   46篇
  2004年   56篇
  2003年   52篇
  2002年   48篇
  2001年   20篇
  2000年   25篇
  1999年   26篇
  1998年   21篇
  1997年   25篇
  1996年   21篇
  1995年   20篇
  1994年   27篇
  1993年   19篇
  1992年   16篇
  1991年   13篇
  1990年   12篇
  1989年   13篇
  1988年   11篇
  1987年   8篇
  1986年   8篇
  1985年   19篇
  1984年   13篇
  1983年   19篇
  1982年   14篇
  1981年   7篇
  1980年   9篇
  1979年   5篇
  1978年   8篇
  1977年   11篇
  1976年   12篇
  1974年   5篇
  1969年   3篇
排序方式: 共有1556条查询结果,搜索用时 15 毫秒
31.
Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.  相似文献   
32.
Spectral reflectance values of four canopy components (stems, buds, opening flowers, and postflowers of yellow starthistle (Centaurea solstitialis)) were measured to describe their spectral characteristics. We then physically combined these canopy components to simulate the flowering stage indicated by accumulated flower ratios (AFR) 10%, 40%, 70%, and 90%, respectively. Spectral dissimilarity and spectral angles were calculated to quantitatively identify spectral differences among canopy components and characteristic patterns of these flowering stages. This study demonstrated the ability of hyperspectral data to characterize canopy components, and identify different flowering stages. Stems had a typical spectral profile of green vegetation, which produced a spectral dissimilarity with three reproduction organs (buds, opening flowers, and postflowers). Quantitative differences between simulated flower stages depended on spectral regions and phenological stages examined. Using full-range canopy spectra, the initial flowering stage could be separated from the early peak, peak, and late flowering stages by three spectral regions, i.e. the blue absorption (around 480 nm) and red absorption (around 650 nm) regions and NIR plateau from 730 nm to 950 nm. For airborne CASI data, only the red absorption region and NIR plateau could be used to identify the flowering stages in the field. This study also revealed that the peak flowering stage was more easily recognized than any of the other three stages.  相似文献   
33.
Nitrate contamination of water sources is a concern where large amounts of nitrogen fertilizers are regularly applied to soils. Ingested nitrate from dietary sources and drinking water can be converted to nitrite and ultimately to N-nitroso compounds, many of which are known carcinogens. Epidemiologic studies of drinking water nitrate and cancer report mixed findings; a criticism is the use of nitrate concentrations from retrospective drinking water data to assign exposure levels. Residential point-of-use nitrate data are scarce; gaps in historical data for municipal supply finished water hamper exposure classification efforts. We used generalized linear regression models to estimate and compare historical raw water and finished water nitrate levels (1960s--1990s) in single source Iowa municipal supplies to determine whether raw water monitoring data could supplement finished water data to improve exposure assessment. Comparison of raw water and finished water samples (same sampling date) showed a significant difference in nitrate levels in municipalities using rivers; municipalities using other surface water or alluvial groundwater had no difference in nitrate levels. A regional aggregation of alluvial groundwater municipalities was constructed based on results from a previous study showing regional differences in nitrate contamination of private wells; results from this analysis were mixed, dependent upon region and decade. These analyses demonstrate using historical raw water nitrate monitoring data to supplement finished water data for exposure assessment is appropriate for individual Iowa municipal supplies using alluvial groundwater, lakes or reservoirs. Using alluvial raw water data on a regional basis is dependent on region and decade.  相似文献   
34.
Determining a remeasurement frequency of variables over time is required in monitoring environmental systems. This article demonstrates methods based on regression modeling and spatio-temporal variability to determine the time interval to remeasure the ground and vegetation cover factor on permanent plots for monitoring a soil erosion system. The spatio-temporal variability methods include use of historical data to predict semivariograms, modeling average temporal variability, and temporal interpolation by two-step kriging. The results show that for the cover factor, the relative errors of the prediction increase with an increased length of time interval between remeasurements when using the regression and semivariogram models. Given precision or accuracy requirements, appropriate time intervals can be determined. However, the remeasurement frequency also varies depending on the prediction interval time. As an alternative method, the range parameter of a semivariogram model can be used to quantify average temporal variability that approximates the maximum time interval between remeasurements. This method is simpler than regression and semivariogram modeling, but it requires a long-term dataset based on permanent plots. In addition, the temporal interpolation by two-step kriging is also used to determine the time interval. This method is applicable when remeasurements in time are not sufficient. If spatial and temporal remeasurements are sufficient, it can be expanded and applied to design spatial and temporal sampling simultaneously.  相似文献   
35.
Dredged material levees in coastal Louisiana are normally associated with pipeline canals or, more frequently, canals dredged through the wetlands to allow access to drilling locations for mineral extraction. The hydrologic impact on marshes behind the levee is of concern to coastal resource managers because of the potential impact on sediment transport and deposition, and the effect on estuarine organism access to valuable nursery habitat. This study examined the effects of gaps in dredged material levees, compared to continuous levees and natural channel banks, on these two aspects of marsh function. Field studies for sediment deposition were conducted biweekly for a year, and nekton samples were collected in spring and fall. Variation in nekton density among study arears and landscape types was great in part because of the inherent sampling gear issues and in part because of differences in characteristics among areas. Nekton densities were generally greater in natural compared to leveed and gapped landscapes. Differences in landscape type did not explain patterns in sediment deposition. The gaps examined appear to be too restrictive of marsh flooding to provide efficient movements of floodwaters onto the marsh during moderate flooding events. The “trapping” effect of the levees increases sediment deposition during extreme events. Gapping material levees may be an effective method of partially restoring upper marsh connection to nekton, but this method may work best in lower elevation marshes where nekton use is greater.  相似文献   
36.
Impacts of land cover on stream hydrology in the West Georgia Piedmont, USA   总被引:1,自引:0,他引:1  
The southeastern United States is experiencing rapid urban development. Consequently, Georgia's streams are experiencing hydrologic alterations from extensive development and from other land use activities such as livestock grazing and silviculture. A study was performed to assess stream hydrology within 18 watersheds ranging from 500 to 2500 ha. Study streams were first, second, or third order and hydrology was continuously monitored from 29 July 2003 to 23 September 2004 using InSitu pressure transducers. Rating curves between stream stage (i.e., water depth) and discharge were developed for each stream by correlating biweekly discharge measurements and stage data. Dependent variables were calculated from discharge data and placed into 4 categories: flow frequency (i.e., the number of times a predetermined discharge threshold is exceeded), flow magnitude (i.e., maximum and minimum flows), flow duration (i.e., the amount of time discharge was above or below a predetermined threshold), and flow predictability and flashiness. Fine resolution data (i.e., 15-min interval) were also compared to daily discharge data to determine if resolution affected how streams were classified hydrologically. Urban watersheds experienced flashy discharges during storm events, whereas pastoral and forested watersheds showed less flashy hydrographs. Also, in comparison to all other flow variables, flow frequency measures were most strongly correlated to land cover. Furthermore, the stream hydrology was explained similarly with both the 15-min and daily data resolutions.  相似文献   
37.
Field experiments were conducted to optimize the phytoextraction of weathered p,p'-DDE (p,p'-dichlorodiphenyldichloroethylene) by Cucurbita subspecies. The effects of two soil amendments, mycorrhizae or a biosurfactant, on p,p'-DDE accumulation was determined. Also, p,p'-DDE uptake was assessed during plant growth (12, 26, 38, and 62 d), and cultivars that accumulate weathered p,p'-DDE were intercropped with cultivars known not to have that ability. Cucurbita pepo L. ssp. pepo accumulated large amounts of the contaminant, having stem bioconcentration factors, amounts of p,p'-DDE translocated, and contaminant phytoextraction that were 14, 9.9, and 5.0 times greater than C. pepo L. ssp. ovifera (L.) D.S. Decker, respectively. During 62 d, the stem BCF (bioconcentration factor) for p,p'-DDE in subspecies pepo remained constant and the total amount of contaminant accumulated was correlated with plant biomass (r(2) = 0.86). For subspecies ovifera, the stem BCF was highest at 12 d (1.5) but decreased to 0.39 by 62 d, and p,p'-DDE removal was not correlated with plant biomass. Mycorrhizal inoculation increased p,p'-DDE accumulation by both subspecies by an average 4.4 times. For subspecies pepo, mycorrhizae increased the percentage of contaminant extracted from 0.72 to 2.1%. Biosurfactant amendment also enhanced contaminant accumulation by both subspecies, although treatment reduced subspecies ovifera biomass by 60%. The biosurfactant had no effect on the biomass of subspecies pepo, increased the average contaminant concentration by 3.6-fold, and doubled the overall amount of p,p'-DDE removed from the soil. Soil amendments that enhance the mobility of weathered persistent organic pollutants will significantly increase the amount of contaminant phytoextraction by Cucurbita pepo.  相似文献   
38.
Environmental fate of alkylphenols and alkylphenol ethoxylates--a review   总被引:31,自引:0,他引:31  
Alkylphenol ethoxylates (APEs) are widely used surfactants in domestic and industrial products, which are commonly found in wastewater discharges and in sewage treatment plant (STP) effluents. Degradation of APEs in wastewater treatment plants or in the environment generates more persistent shorter-chain APEs and alkylphenols (APs) such as nonylphenol (NP), octylphenol (OP) and AP mono- to triethoxylates (NPE1, NPE2 and NPE3). There is concern that APE metabolites (NP, OP, NPE1-3) can mimic natural hormones and that the levels present in the environment may be sufficient to disrupt endocrine function in wildlife and humans. The physicochemical properties of the APE metabolites (NP, NPE1-4, OP, OPE1-4), in particular the high K(ow) values, indicate that they will partition effectively into sediments following discharge from STPs. The aqueous solubility data for the APE metabolites indicate that the concentration in water combined with the high partition coefficients will provide a significant reservoir (load) in various environmental compartments. Data from studies conducted in many regions across the world have shown significant levels in samples of every environmental compartment examined. In the US, levels of NP in air ranged from 0.01 to 81 ng/m3, with seasonal trends observed. Concentrations of APE metabolites in treated wastewater effluents in the US ranged from < 0.1 to 369 microg/l, in Spain they were between 6 and 343 microg/l and concentrations up to 330 microg/l were found in the UK. Levels in sediments reflected the high partition coefficients with concentrations reported ranging from < 0.1 to 13,700 microg/kg for sediments in the US. Fish in the UK were found to contain up to 0.8 microg/kg NP in muscle tissue. APEs degraded faster in the water column than in sediment. Aerobic conditions facilitate easier further biotransformation of APE metabolites than anaerobic conditions.  相似文献   
39.
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well‐known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as the primary example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real‐time nutrient data. The concurrent emergence of new tools to integrate, manage, and share large datasets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous monitoring to rapidly move forward. We highlight several near‐term opportunities for federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large‐scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation's water resources.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号