首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   4篇
  国内免费   8篇
安全科学   11篇
废物处理   29篇
环保管理   54篇
综合类   89篇
基础理论   143篇
环境理论   4篇
污染及防治   194篇
评价与监测   31篇
社会与环境   31篇
灾害及防治   1篇
  2023年   8篇
  2022年   7篇
  2021年   9篇
  2020年   9篇
  2019年   4篇
  2018年   21篇
  2017年   10篇
  2016年   14篇
  2015年   14篇
  2014年   22篇
  2013年   45篇
  2012年   20篇
  2011年   51篇
  2010年   32篇
  2009年   35篇
  2008年   25篇
  2007年   41篇
  2006年   31篇
  2005年   21篇
  2004年   30篇
  2003年   23篇
  2002年   25篇
  2001年   10篇
  2000年   7篇
  1999年   2篇
  1998年   12篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1966年   1篇
  1964年   1篇
  1963年   1篇
  1960年   2篇
  1959年   1篇
  1957年   2篇
  1956年   2篇
  1955年   4篇
  1954年   1篇
  1952年   1篇
  1951年   1篇
  1922年   3篇
排序方式: 共有587条查询结果,搜索用时 515 毫秒
351.
The fate of (14)C-labeled sulfadiazine ((14)C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (A(p) horizon of loamy sand, orthic luvisol; A(p) horizon of silt loam, cambisol) amended with fresh and aged (6 months) (14)C-manure [40 g kg(-1) of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with (14)C-SDZ. Mineralization of (14)C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable (14)C (ethanol-water, 9:1, v/v) decreased with time to 4-13% after 218 days of incubation with fresh and aged (14)C-manure and both soils. Non-extractable residues were the main route of the fate of the (14)C-SDZ residues (above 90% of total recovered (14)C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the (14)C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl(2) solution) also decreased with increasing incubation period (5-7% after 218 days). Due to thin-layer chromatography (TLC), 500 microg of (14)C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh (14)C-manure, and about 50 microg kg(-1) after 218 days. Bioavailable (14)C-SDZ portions present in the CaCl(2) extracts were about 350 microg kg(-1) with amendment. Higher concentrations were initially detected with aged (14)C-manure (ethanol-water extracts: 1,920 microg kg(-1); CaCl(2) extracts: 1,020 microg kg(-1)), probably due to release of (14)C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the (14)C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble (14)C-SDZ residues contained in (14)C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZ's non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.  相似文献   
352.
353.
354.
Particulate matter (PM) sources at four different monitoring sites in Alexandra, New Zealand, were investigated on an hourly timescale. Three of the sites were located on a horizontal transect, upwind, central, and downwind of the general katabatic flow pathway. The fourth monitoring site was located at the central site, but at a height of 26 m, using a knuckleboom, when wind conditions permitted. Average hourly PM10 (PM with an aerodynamic diameter <10 μm) concentrations in Alexandra showed slightly different diurnal profiles depending on the sampling site location. Each location did, however, feature a large evening peak and smaller morning peak in PM10 concentrations. The central site in Alexandra experienced the highest PM10 concentrations as a result of PM transport along a number of katabatic flow pathways. A significant difference in PM10 concentrations between the central and elevated sites indicated that a shallow inversion layer formed below the elevated site, limiting the vertical dispersion of pollutants. Four PM10 sources were identified at each of the sites: biomass combustion, vehicles, crustal matter, and marine aerosol. Biomass combustion was identified as the most significant source of PM10, contributing up to 91% of the measured PM10. Plots of the average hourly source contributions to each site revealed that biomass combustion was responsible for both the evening and morning peaks in PM10 concentrations observed at each of the sites, suggesting that Alexandra residents were relighting their fires when they rose in the morning. The identification of PM sources on an hourly timescale can have significant implications for air quality management.
Implications: Monitoring the sources of PM10 on an hourly timescale at multiple sites within an airshed provides extremely useful information for air quality management. Sources responsible for observed peaks in measured diurnal PM10 concentration profiles can be easily identified and targeted for reduction. Also, hourly PM10 sampling can provide crucial information on the role meteorology plays in the development of elevated PM10 concentrations.  相似文献   
355.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   
356.
Two modern fungicides, a strobilurin, azoxystrobin (AZO), and a triazole, epoxiconazole (EPO), applied as foliar spray on spring barley (Hordeum vulgare L. cv. Scarlett) 3 days prior to fumigation with injurious doses of ozone (150-250 ppb; 5 days; 7 h/day) induced a 50-60% protection against ozone injury on leaves. Fungicide treatments of barley plants at growth stage (GS) 32 significantly increased the total leaf soluble protein content. Additionally, activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX) and glutathione reductase (GR) were increased by both fungicides at maximal rates of 16, 75, 51 and 144%, respectively. Guiacol-peroxidase (POX) activity was elevated by 50-110% only in AZO treated plants, while this effect was lacking after treatments with EPO. This coincided with elevated levels of hydrogen peroxide (H2O2) only in EPO and not in AZO treated plants. The enhancement of the plant antioxidative system by the two fungicides significantly and considerably reduced the level of superoxide (O2*-) in leaves. Fumigation of barley plants for 4 days with non-injurious ozone doses (120-150 ppb, 7 h/day) markedly and immediately stimulated O2*- accumulation in leaves, while H2O2 was increased only after the third day of fumigation. Therefore, O2*- itself or as precursor of even more toxic oxyradicals appears to be more indicative for ozone-induced leaf damage than H2O2. Ozone also induced significant increases in the activity of antioxidant enzymes (SOD, POX and CAT) after 2 days of fumigation in fungicide untreated plants, while after 4 days of fumigation these enzymes declined to a level lower than in unfumigated plants, due to the oxidative degradation of leaf proteins. This is the first report demonstrating the marked enhancement of plant antioxidative enzymes and the enhanced scavenging of potentially harmful O2*- by fungicides as a mechanism of protecting plants against noxious oxidative stress from the environment. The antioxidant effect of modern fungicides widely used in intense cereal production in many countries represents an important factor when evaluating potential air pollution effects in agriculture.  相似文献   
357.
Using recent data on a cross-section of Swedish chemical and pulp and paper firms, this paper provides novel empirical insights into the Porter hypothesis. Well-designed environmental regulation can stimulate firms’ innovative capabilities, while at the same time generating innovation offsets that may both offset net compliance costs and yield a competitive edge over those firms that are not affected by such regulations. In doing so, we also test the alleged effectiveness of regulatory time strategies in stimulating innovation activities of regulated firms. We find evidence for the effectiveness of such well-designed regulations: announced rather than existing regulation induces innovation and some innovation offsets. Our results imply that empirical tests of the Porter hypothesis that do not account for its dynamic nature, and that do not measure well-designed regulations, might provide misleading conclusions as to its validity.  相似文献   
358.
We investigated the effect of 4 yr of aging of a noncalcareous soil contaminated with filter dust from a brass foundry (80% w/w ZnO, 15% w/w Cu0.6Zn0.4) on the chemical extractability of Zn and Cu and their uptake by barley (Hordeum vulgare L.), pea (Pisum sativum L.), and sunflower (Helianthus annus L.). Pot experiments were conducted with the freshly contaminated soil (2250 mg kg-1 Zn; 503 mg kg-1 Cu), with the contaminated soil aged for 4 yr in the field (1811 mg kg-1 Zn; 385 mg kg-1 Cu), and with the uncontaminated control soil (136 mg kg-1 Zn; 32 mg kg-1 Cu). In comparison with the uncontaminated soil, the growth of barley and pea was clearly reduced in both contaminated soils, while toxicity symptoms did not systematically vary from the freshly contaminated to the 4 yr aged soil. The sunflower did not grow in the contaminated soils. The slow oxidative dissolution of the brass platelets led to an increase in the solubility and the plant uptake of Cu from the freshly contaminated to the 4 yr aged soil. In an earlier study, we found that the fine-grained ZnO dissolved in the field soil within 9 mo and that about half of the released Zn was incorporated into a layered double hydroxide phase and about half was adsorbed to the soil matrix. These changes in Zn speciation did not lead to a reduction of the Zn contents in the shoots and roots of barley and pea grown in the aged soil as compared with the freshly contaminated soil.  相似文献   
359.
Mayr S  Hacke U  Schmid P  Schwienbacher F  Gruber A 《Ecology》2006,87(12):3175-3185
Drought stress can cause xylem embolism in trees when the water potential (psi) in the xylem falls below specific vulnerability thresholds. At the alpine timberline, frost drought is known to cause excessive winter embolism unless xylem vulnerability or transpiration is sufficiently reduced to avoid critical psi. We compared annual courses of psi and embolism in Picea abies, Pinus cembra, Pinus mugo, Larix decidua, and Juniperus communis growing at the timberline vs. low altitude. In addition, vulnerability properties and related anatomical parameters as well as wood density (D(t)) and wall reinforcement (wall thickness related to conduit diameter) were studied. This allowed an estimate of stress intensities as well as a detection of adaptations that reduce embolism formation. At the alpine timberline, psi was lowest during winter with corresponding embolism rates of up to 100% in three of the conifers studied. Only Pinus cembra and Larix decidua avoided winter embolism due to moderate psi. Minor embolism was observed at low altitude where the water potentials of all species remained within a narrow range throughout the year. Within species, differences in psi50 (psi at 50% loss of conductivity) at high vs. low altitude were less than 1 MPa. In Picea abies and Pinus cembra, psi50 was more negative at the timberline while, in the other conifer species, psi50 was more negative at low altitude. Juniperus communis exhibited the lowest (-6.4 +/- 0.04 MPa; mean +/- SE) and Pinus mugo the highest psi50 (-3.34 +/- 0.03 MPa). In some cases, D(t) and tracheid wall reinforcement were higher than in previously established relationships of these parameters with psi50, possibly because of mechanical demands associated with the specific growing conditions. Conifers growing at the alpine timberline were exposed to higher drought stress intensities than individuals at low altitude. Frost drought during winter caused high embolism rates which were probably amplified by freeze-thaw stress. Although frost drought had a large effect on plant water transport, adaptations in hydraulic safety and related anatomical parameters were observed in only a few of the conifer species studied.  相似文献   
360.
The Gastein valley in the Central Part of the Austrian Alps was one of the regions most heavily affected by fallout of the Chernobyl nuclear catastrophe, depositing (137)Cs inventory up to 70 kBq/m(2) in May 1986. In many studies dealing with the uptake of (137)Cs by vegetation used for farming, a significant correlation between (137)Cs concentration in the plants and altitude a.s.l. has been observed. In order to quantify the influence of the composition of plant communities on the average (137)Cs concentration in vegetation on farmland, plant-specific activity concentrations in plant species have been determined. Alongside a transect from valley sites at 850 m a.s.l. to alpine pastures at 1660 m, the aggregated transfer factors C(ag) (m(2)/kg) have been measured for plant communities and plant species. C(ag) values for mixed vegetation are more or less similar in valley sites, but they increase exponentially with a doubling height of 122+/-22 m above appr. 1200 m altitude a.s.l. On average all species are affected by this increase in a similar way. C(ag) values of ubiquitous plant indicate that the composition of plant communities is of minor importance for the contamination of mixed vegetation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号