96-h LC50 values of cadmium (Cd) to fish Labeo rohita and the copepod Diaptomus forbesi, determined by static bioassays, were, respectively, 89.5 and 10.2 mg/l. LC50 values increased significantly when fish pre-exposed to 100–350 mg/l CaO or 0.5–1.5 mg/l KMnO4 for 4 d and the copepod to 20–70 mg/l CaO or 0.25–1.0 mg/l KMnO4 for same period. The LC50 values also increased when the pre-exposure period of CaO was increased to 12 d at concentration 100 mg/l for fish and 20 mg/l for copepod. All fish died when pre-exposed to 1.5 mg/l KMnO4 for 8 d. But LC50 values of Cd to copepod increased when pre-exposure period of 0.5 mg/l KMnO4 was increased from 4 to 8 d. 相似文献
Environmental Economics and Policy Studies - This study estimates health cost of salinity contamination in drinking water in the severe salinity affected three south-western districts of... 相似文献
A two-dimensional (2-D) model is developed to predict the torrefaction behavior of a large wet biomass particle. Although one-dimensional (1-D) model is found to be adequate for L/D ≥ 6, the necessity of using 2-D model at lower L/D ratios and higher torrefaction temperature is established. Errors up to 18% are observed in predicted mass fractions between 1-D and 2-D models. The center temperatures differed more, up to 96%, between z = 0 and z = L/2 in 2-D model which is not captured by the 1-D model. The model predictions agree well with the experimental results of the present authors and others. The evolution of the temperature profile is found to govern the mass fraction profile. At higher reactor temperature, three distinct zones are visible in the contour plots: peripheral fully torrefied zone, intermediate torrefying zone, and core with unreacted virgin biomass zone. Simulation studies show the formation of two symmetric annular hot spots at the ends, which move inward axially and subsequently merge at the center, the rate being faster for smaller L/D ratio. However, 1-D model does not provide such insight. The effects of reactor temperature, particle size, the residence time, and the initial moisture content on the torrefaction behavior are investigated. 相似文献
Environmental Geochemistry and Health - Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) (Ba, Zn, Pb, Cu, Cr, Ni, As, Co) were determined in the road dusts of a coal... 相似文献
Dutta, Sudarshan, Shreeram Inamdar, Jerry Tso, Diana S. Aga, and J. Tom Sims, 2012. Dissolved Organic Carbon and Estrogen Transport in Surface Runoff from Agricultural Land Receiving Poultry Litter. Journal of the American Water Resources Association (JAWRA) 48(3): 558-569. DOI: 10.1111/j.1752-1688.2011.00634.x Abstract: Dissolved organic carbon (DOC) provides a reactive substrate for the transport of organic contaminants with runoff. Very few studies have investigated the export of DOC from agricultural land, especially those receiving manure applications. We investigated exports of DOC in surface runoff from agricultural fields receiving various treatments of poultry litter (raw vs. pelletized). In addition, we also investigated how estrogens in runoff were associated with DOC. Different forms of estrogens studied were: estrone, 17β-estradiol, estriol, and their conjugates. Experimental agricultural plots were 12 m × 5 m long and had reduced tillage and no-till management practices. The aromatic content of DOC was characterized using specific ultraviolet absorbance (SUVA). Flow-weighted concentrations of DOC and SUVA in surface runoff from plots with poultry litter were significantly (p ≤ 0.10) greater than the control (no litter) plots. Compared to pelletized poultry litter, reduced-tillage plots with raw litter yielded higher DOC concentrations and SUVA values. No significant differences (p ≥ 0.10) in DOC and SUVA were observed between litter treatments for plots with no-till. Total estrogen concentrations (including all forms) were positively and significantly (p ≤ 0.10) correlated with DOC. These results can help select and guide agricultural management practices that can reduce the exports of DOC and associated contaminant from agricultural land receiving manure applications. 相似文献
Atrazine degrading enrichment culture was prepared by its repeated addition to an alluvial soil and its ability to degrade atrazine in mineral salts medium and soil was studied. Enrichment culture utilized atrazine as a sole source of carbon and nitrogen in mineral salts medium and degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as additional source of carbon and nitrogen, respectively. Biuret was detected as the only metabolite of atrazine while deethylatrazine, deisopropyatrazine, hydroxyatrazine and cyanuric acid were never detected at any stage of degradation. Enrichment culture degraded atrazine in an alkaline alluvial soil while no degradation was observed in the acidic laterite soil. Enrichment culture was able to withstand high concentrations of atrazine (110 μg/g) in the alluvial soil as atrazine was completely degraded. Developed mixed culture has the ability to degrade atrazine and has potential application in decontamination of contaminated water and soil. 相似文献
Arterial and aortic valve calcifications are the most prevalent pathophysiological conditions among all the reported cases of cardiovascular calcifications. It increases with several risk factors like age, hypertension, external stimuli, mechanical forces, lipid deposition, malfunction of genes and signaling pathways, enhancement of naturally occurring calcium inhibitors, and many others. Modern-day lifestyle is affected by numerous environmental factors and harmful toxins that impair our health rather than providing benefits. Applying the combinatorial approach or targeting the exact mechanism could be a new strategy for drug designing or attenuating the severity of calcification. Most of the non-communicable diseases are life-threatening; thus, altering the phenotype and not the genotype may reveal the gateway for fighting with upcoming hurdles. Overall, this review summarizes the reason behind the generation of arterial and aortic valve calcification and its related signaling pathways and also the detrimental effects of calcification. In addition, the individual process of epigenetics and how the implementation of this process becomes a novel approach for diminishing the harmful effect of calcification are discussed. Noteworthy, as epigenetics is linked with genetics and environmental factors necessitates further clinical trials for complete and in-depth understanding and application of this strategy in a more specific and prudent manner.
Bentonite was modified by quaternary ammonium cations viz. cetytrimethylammonium (CTA), cetylpyridinium (CP), rioctylmethylammonium (TOM) and pcholine (PTC) at 100% cation exchange capacity of bentonite and was characterized by X-ray diffraction, CHNS elemental analyser and Fourier transform infrared spectroscopy. The sorption of imidacloprid on organobentonites/bentonite was studied by batch method. Normal bentonite could adsorb imidacloprid only upto 19.31–22.18% while all organobentonites except PTC bentonite (PTCB), enhanced its adsorption by three to four times. Highest adsorption was observed in case of TOM bentonite (TOMB) (76.94–83.16%). Adsorption kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. For normal bentonite data were best fitted to pseudo-first-order kinetic, while for organobentonites fitted to pseudo-second-order kinetics. Sorption data were analysed using Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherm models. Data were well fitted to Freundlich adsorption isotherm. Product of Freundlich adsorption constant and heterogeneity parameter (Kf.1/n) was in following order: TOMB (301.87) > CTA bentonite (CTAB) (152.12) > CP bentonite (CPB) (92.58) > bentonite (27.25). Desorption study confirmed hysteresis and concentration dependence. The present study showed that the organobentonite could be a good sorbent for removal of imidacloprid from natural water sample also. Percentage adsorption and Distribution coefficient (mL g?1) value of different adsorbent was in following order: TOMB (74.85% and 297.54) > CTAB (55.78% and 126.15) > CPB (45.81% and 84.55) > bentonite (10.65% and 11.92). 相似文献