To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO4], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO4] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO4] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO4] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO4] are related to releases from coal mining or burning rather than oil and gas development.
Pigment composition and size distribution of phytoplankton were analysed in a group of Mediterranean salt marshes, where hydrology is dominated by sudden inputs during sea storms, followed by long periods of confinement. These marshes are characterized by a low inorganic–organic nutrient ratio, and inorganic nitrogen is especially scarce due to denitrification. Nutrients were the main factor affecting phytoplankton biomass, while zooplankton grazing did not control either phytoplankton community composition, or their size distribution. The relative abundance of the different phytoplankton groups was analysed by correspondence analysis using the pigment composition measured by high-performance liquid chromatography (HPLC) and analysed with the CHEMTAX programme. In this analysis, phytoplankton pigment composition was correlated with two nutrient gradients. The first gradient was the ratio of nitrate–total nitrogen (TN), since the different phytoplankton groups were distributed according to their eco–physiological differences in nitrogen uptake. The second gradient was correlated with total nutrient loading. Biomass size distributions frequently showed a lack of intermediate sized nanophytoplankton (2.5–4 μm in diameter), and the importance of this lack of intermediate sizes correlated with dinoflagellate biomass. These results suggested that in confined environments, where nutrients are mainly in an organic form, dinoflagellates take advantage of their mixotrophy, by competing and grazing on smaller phytoplankters simultaneously. 相似文献
Recurrent, low-severity fire in ponderosa pine (Pinus ponderosa)/interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests is thought to have directly influenced nitrogen (N) cycling and availability. However, no studies to date have investigated the influence of natural fire intervals on soil processes in undisturbed forests, thereby limiting our ability to understand ecological processes and successional dynamics in this important ecosystem of the Rocky Mountain West. Here, we tested the standing hypothesis that recurrent fire in ponderosa pine/Douglas-fir forests of the Inland Northwest decreases total soil N, but increases N turnover and nutrient availability. We compared soils in stands unburned over the past 69-130 years vs. stands exposed to two or more fires over the last 130 years at seven distinct locations in two wilderness areas. Mineral soil samples were collected from each of the seven sites in June and July of 2003 and analyzed for pH, total C and N, potentially mineralizable N (PMN), and extractable NH4+, NO3-, PO4(-3), Ca+2, Mg+2, and K+. Nitrogen transformations were assessed at five sites by installing ionic resin capsules in the mineral soil in August of 2003 and by conducting laboratory assays of nitrification potential and net nitrification in aerobic incubations. Total N and PMN decreased in stands subjected to multiple fires. This loss of total N and labile N was not reflected in concentrations of extractable NH4+ and NO3-. Rather, multiple fires caused an increase in NO3 sorbed on ionic resins, nitrification potential, and net nitrification in spite of the burned stands not having been exposed to fire for at least 12-17 years. Charcoal collected from a recent fire site and added to unburned soils increased nitrification potential, suggesting that the decrease of charcoal in the absence of fire may play an important role in N transformations in fire-dependent ecosystems in the long term. Interestingly, we found no consistent effect of fire frequency on extractable P or alkaline metal concentrations. Our results corroborate the largely untested hypothesis that frequent fire in ponderosa pine forests increases inorganic N availability in the long term and emphasize the need to study natural, unmanaged sites in far greater detail. 相似文献
Persistent organic pollutants and heavy metals can cause diseases in women, however, the relationships of these pollutants
and uterine leiomyomas (UL), which are non-cancerous tumors of the uterus, are unclear. This study focused on the quantification
of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated
diphenyl ethers (PBDEs), and heavy metals in subcutaneous and visceral fat obtained from patients with UL and in subcutaneous
fat of a control group of women without UL to determine if there were any correlations between concentrations of persistent
organic pollutants (POPs) and heavy metals and the incidence of UL. 相似文献
The Atacama Desert in Northern Chile is one of the most arid places on earth. However, fog occurs regularly at the coastal
mountain range and can be collected at different sites in Chile to supply settlements at the coast with freshwater. This is
also planned in the fog oasis Alto Patache (20°49′S, 70°09′W). For this pilot study, we collected fog water samples in July
and August 2008 for chemical analysis to find indications for its suitability for domestic use. 相似文献
Perfluorinated compounds (PFCs) are global environmental pollutants that bioaccumulate in wildlife and humans. Laboratory
experiments have revealed toxic effects such as delayed development, humoral suppression, and hepatotoxicity. Although numerous
human blood levels have been reported, little is known about distribution in the human body. Knowledge about PFC distribution
and accumulation in the human body is crucial to understanding uptake and subsequent effects as well as to conduct risk assessments.
The present study reports PFC levels in human liver and breast milk from a general population living in Catalonia, Spain.
Liver and milk levels are compared to previously reported levels in blood from the same geographic area as well as to other
existing reports on human liver and milk levels in other countries. 相似文献
In the present study, endpoints including in vitro pollen performance (i.e., germination and tube growth) and lethality were used as assessments of nanotoxicity. Pollen was treated with 5-10 nm-sized Pd particles, similar to those released into the environment by catalytic car exhaust converters. Results showed Pd-nanoparticles altered kiwifruit pollen morphology and entered the grains more rapidly and to a greater extent than soluble Pd(II). At particulate Pd concentrations well below those of soluble Pd(II), pollen grains experienced rapid losses in endogenous calcium and pollen plasma membrane damage was induced. This resulted in severe inhibition and subsequent cessation of pollen tube emergence and elongation at particulate Pd concentrations as low as 0.4 mg L−1. Particulate Pd emissions related to automobile traffic have been increasing and are accumulating in the environment. This could seriously jeopardize in vivo pollen function, with impacts at an ecosystem level. 相似文献
Age dependency of [3H]-ouabain binding, 45Ca2+ eflux and its magnetosensitivity in rats’ brain cortex and heart muscle tissues were studied. Curves of dose-dependent [3H]-ouabain binding consisted of three components with different affinities (10−7–10−4 M (α1); 10−9–10−7 M (α2); and 10−11–10−9 M (α3)). These curves were also characterized by different dose-dependent kinetics. [3H]-ouabain binding with α3 receptors in brain cortex and heart muscle tissues of young and adult animals had a dose-dependent character, while that
in old ones had a dose-independent character. A 0.2 T static magnetic field (SMF) exposure had modulation effect on ouabain
binding with α1, α2 and α3 receptors in young rats, while in adult ones, only α3 receptors were magnetosensitive. In old animals, SMF exposure had no significant effect on ouabain binding with α3 receptors in brain cortex, while in heart muscle, it had inhibitory effect on it. Age-dependent effect of ouabain impact
on 45Ca2+ efflux showed that all concentrations of ouabain lead to inhibitory effect in young animals’ brain cortex and heart muscle
(with the exception of 10−10 and 10−6 M), while in old ones, it had activation effect as compared with data received without ouabain. SMF exposure in young animals
had activation effect on 45Ca2+ efflux from brain cortex and heart muscle in data without ouabain, and in old rats, 45Ca2+ efflux from brain cortex was magnetic insensitive. In old animals, SMF increased 45Ca2+ efflux even after extra low concentration of ouabain. It is suggested that α3 receptors having a crucial role in the regulation of Na+/Ca2+ exchange serve as age-dependent magnetosensors of excitable cells. 相似文献