首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   1篇
  国内免费   29篇
安全科学   14篇
废物处理   54篇
环保管理   55篇
综合类   88篇
基础理论   128篇
污染及防治   288篇
评价与监测   84篇
社会与环境   40篇
灾害及防治   8篇
  2023年   51篇
  2022年   98篇
  2021年   88篇
  2020年   21篇
  2019年   29篇
  2018年   36篇
  2017年   28篇
  2016年   41篇
  2015年   19篇
  2014年   35篇
  2013年   70篇
  2012年   23篇
  2011年   27篇
  2010年   23篇
  2009年   12篇
  2008年   24篇
  2007年   22篇
  2006年   17篇
  2005年   14篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有759条查询结果,搜索用时 62 毫秒
531.
Environmental Science and Pollution Research - The undertaken research examines the impact of green attitude, green customer value (e.g., environmental image and perceived value), and green...  相似文献   
532.
Environmental Science and Pollution Research - The development of various metal oxide semiconductor materials has resulted in better performance of the gas sensors in terms of selectivity,...  相似文献   
533.

Global industrialization and excessive dependence on nonrenewable energy sources have led to an increase in solid waste and climate change, calling for strategies to implement a circular economy in all sectors to reduce carbon emissions by 45% by 2030, and to achieve carbon neutrality by 2050. Here we review circular economy strategies with focus on waste management, climate change, energy, air and water quality, land use, industry, food production, life cycle assessment, and cost-effective routes. We observed that increasing the use of bio-based materials is a challenge in terms of land use and land cover. Carbon removal technologies are actually prohibitively expensive, ranging from 100 to 1200 dollars per ton of carbon dioxide. Politically, only few companies worldwide have set climate change goals. While circular economy strategies can be implemented in various sectors such as industry, waste, energy, buildings, and transportation, life cycle assessment is required to optimize new systems. Overall, we provide a theoretical foundation for a sustainable industrial, agricultural, and commercial future by constructing cost-effective routes to a circular economy.

  相似文献   
534.

The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.

  相似文献   
535.

The global shift from a fossil fuel-based to an electrical-based society is commonly viewed as an ecological improvement. However, the electrical power industry is a major source of carbon dioxide emissions, and incorporating renewable energy can still negatively impact the environment. Despite rising research in renewable energy, the impact of renewable energy consumption on the environment is poorly known. Here, we review the integration of renewable energies into the electricity sector from social, environmental, and economic perspectives. We found that implementing solar photovoltaic, battery storage, wind, hydropower, and bioenergy can provide 504,000 jobs in 2030 and 4.18 million jobs in 2050. For desalinization, photovoltaic/wind/battery storage systems supported by a diesel generator can reduce the cost of water production by 69% and adverse environmental effects by 90%, compared to full fossil fuel systems. The potential of carbon emission reduction increases with the percentage of renewable energy sources utilized. The photovoltaic/wind/hydroelectric system is the most effective in addressing climate change, producing a 2.11–5.46% increase in power generation and a 3.74–71.61% guarantee in share ratios. Compared to single energy systems, hybrid energy systems are more reliable and better equipped to withstand the impacts of climate change on the power supply.

  相似文献   
536.
Environmental Chemistry Letters - The rising amount of waste generated worldwide is inducing issues of pollution, waste management, and recycling, calling for new strategies to improve the waste...  相似文献   
537.
Journal of Material Cycles and Waste Management - Boiler ash, produced by burning heavy fuel oil (HFO) in electrical power plants, is one of the most serious environmental problems facing oil-rich...  相似文献   
538.
Nesar Ahmed  Max Troell 《Ambio》2010,39(1):20-29
Freshwater prawn (Macrobrachium rosenbergii) farming in Bangladesh has, to a large extent, been dependent on the supply of wild larvae. Although there are 81 freshwater prawn hatcheries in the country, a lack of technical knowledge, inadequate skilled manpower, and an insufficient supply of wild broods have limited hatchery production. Many thousands of coastal poor people, including women, are engaged in fishing for wild prawn larvae along the coastline during a few months each year. On average, 40% of the total yearly income for these people comes from prawn larvae fishing activity. However, indiscriminate fishing of wild larvae, with high levels of bycatch of juvenile fish and crustaceans, may impact negatively on production and biodiversity in coastal ecosystems. This concern has provoked the imposition of restrictions on larvae collection. The ban has, however, not been firmly enforced because of the limited availability of hatchery-raised larvae, the lack of an alternative livelihood for people involved in larvae fishing, and weak enforcement power. This article discusses the environmental and social consequences of prawn larvae fishing and concludes that, by increasing awareness among fry fishers, improving fishing techniques (reducing bycatch mortality), and improving the survival of fry in the market chain, a temporal ban may be a prudent measure when considering the potential negative impacts of bycatch. However, it also suggests that more research is needed to find out about the impact of larvae fishing on nontarget organisms and on the populations of targeted species.  相似文献   
539.
Integrated solid waste management based on the 3R approach   总被引:1,自引:0,他引:1  
Integrated solid waste management (ISWM) based on the 3R approach (reduce, reuse, and recycle) is aimed at optimizing the management of solid waste from all the waste-generating sectors (municipal, construction and demolition, industrial, urban agriculture, and healthcare facilities) and involving all the stakeholders (waste generators, service providers, regulators, government, and community/neighborhoods). This article discusses the concept of solid waste management (SWM). Initially, SWM was aimed at reducing the risks to public health, and later the environmental aspect also became an important focus of SWM. Recently, another dimension is becoming a critical factor for SWM, i.e., resource conservation and resource recovery. Hence, the 3R approach is becoming a guiding factor for SWM. On the one hand, 3R helps to minimize the amount of waste from generation to disposal, thus managing the waste more effectively and minimizing the public health and environmental risks associated with it. On the other hand, resource recovery is maximized at all stages of SWM. Lately, the new concept of ISWM has been introduced to streamline all the stages of waste management, i.e., source separation, collection and transportation, transfer stations and material recovery, treatment and resource recovery, and final disposal. It was originally targeted at municipal solid waste management (MSWM), but now the United Nations Environment Programme (UNEP) is promoting this concept to cover all waste generating sectors to optimize the level of material and resource recovery for recycling as well as to improve the efficiency of waste management services. The ISWM concept is being transformed into ISWM systems to replace conventional SWM systems. This article further discusses the implementation process for ISWM. The process includes a baseline study on the characterization and quantification of waste for all waste generating sectors within a city, assessment of current waste management systems and practices, target setting for ISWM, identification of issues of concern and suggestions from stakeholders, development of a draft ISWM plan, preparation of an implementation strategy, and establishment of a monitoring and feedback system. UNEP is assisting member countries and their cities to develop an ISWM plan covering all the waste generating sectors within a specific geographical or administrative area such as a city or municipality. This umbrella approach is useful to generate sufficient volumes of recycling materials required to make recycling industries feasible. This is also helpful for efficient reallocation of resources for SWM such as collection vehicles, transfer stations, treatment plants, and disposal sites. UNEP is assisting cities to develop and implement ISWM based on the 3R approach. These experiences could be useful for other countries to develop and implement ISWM to achieve improved public health, better environmental protection, and resource conservation and resource recovery.  相似文献   
540.

Purpose

Biodegradation and biodecolorization of Drimarene blue K2RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system.

Method

Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH?5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500?mg?l?1) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24?C72?h. Total run time for reactor operation was 17?days.

Results

The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg?l?1 initial dye concentration and HRT of 24?h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC?CMS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K2RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye.

Conclusion

The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号