首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16649篇
  免费   148篇
  国内免费   109篇
安全科学   443篇
废物处理   672篇
环保管理   1982篇
综合类   2870篇
基础理论   4294篇
环境理论   11篇
污染及防治   4529篇
评价与监测   1114篇
社会与环境   889篇
灾害及防治   102篇
  2023年   110篇
  2022年   225篇
  2021年   237篇
  2020年   149篇
  2019年   168篇
  2018年   338篇
  2017年   336篇
  2016年   471篇
  2015年   360篇
  2014年   521篇
  2013年   1255篇
  2012年   636篇
  2011年   815篇
  2010年   614篇
  2009年   658篇
  2008年   816篇
  2007年   785篇
  2006年   673篇
  2005年   593篇
  2004年   508篇
  2003年   501篇
  2002年   459篇
  2001年   538篇
  2000年   376篇
  1999年   251篇
  1998年   156篇
  1997年   177篇
  1996年   179篇
  1995年   218篇
  1994年   220篇
  1993年   168篇
  1992年   150篇
  1991年   187篇
  1990年   180篇
  1989年   169篇
  1988年   126篇
  1987年   122篇
  1986年   137篇
  1985年   103篇
  1984年   120篇
  1983年   120篇
  1982年   131篇
  1981年   116篇
  1980年   106篇
  1979年   117篇
  1978年   79篇
  1977年   80篇
  1975年   83篇
  1973年   76篇
  1972年   73篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Coastal and freshwater eutrophication continues to accelerate at sites around the world despite intense efforts to control agricultural P loss using traditional conservation and nutrient management strategies. To achieve required reductions in nonpoint P over the next decade, new tools will be needed to address P transfers from soils and applied P sources. Innovative remediation practices are being developed to remove nonpoint P sources from surface water and groundwater using P sorbing materials (PSMs) derived from natural, synthetic, and industrial sources. A wide array of technologies has been conceived, ranging from amendments that immobilize P in soils and manures to filters that remove P from agricultural drainage waters. This collection of papers summarizes theoretical modeling, laboratory, field, and economic assessments of P removal technologies. Modeling and laboratory studies demonstrate the importance of evaluating P removal technologies under controlled conditions before field deployment, and field studies highlight several challenges to P removal that may be unanticipated in the laboratory, including limited P retention by filters during storms, as well as clogging of filters due to sedimentation. Despite the potential of P removal technologies to improve water quality, gaps in our knowledge remain, and additional studies are needed to characterize the long-term performance of these technologies, as well as to more fully understand their costs and benefits in the context of whole-farm- and watershed-scale P management.  相似文献   
962.
High levels of accumulated phosphorus (P) in soils of the Delmarva Peninsula are a major source of dissolved P entering drainage ditches that empty into the Chesapeake Bay. The objective of this study was to design, construct, and monitor a within-ditch filter to remove dissolved P, thereby protecting receiving waters against P losses from upstream areas. In April 2007, 110 Mg of flue gas desulfurization (FGD) gypsum, a low-cost coal combustion product, was used as the reactive ingredient in a ditch filter. The ditch filter was monitored from 2007 to 2010, during which time 29 storm-induced flow events were characterized. For storm-induced flow, the event mean concentration efficiency for total dissolved P (TDP) removal for water passing through the gypsum bed was 73 ± 27% confidence interval (α = 0.05). The removal efficiency for storm-induced flow by the summation of load method was 65 ± 27% confidence interval (α = 0.05). Although chemically effective, the maximum observed hydraulic conductivity of FGD gypsum was 4 L s(-1), but it decreased over time to <1 L s(-1). When bypass flow and base flow were taken into consideration, the ditch filter removed approximately 22% of the TDP load over the 3.6-yr monitoring period. Due to maintenance and clean-out requirements, we conclude that ditch filtration using FGD gypsum is not practical at a farm scale. However, we propose an alternate design consisting of FGD gypsum-filled trenches parallel to the ditch to intercept and treat groundwater before it enters the ditch.  相似文献   
963.
Soil methane (CH(4)) biofilters, containing CH(4)-oxidizing bacteria (methanotrophs), are a promising technology for mitigating greenhouse gas emissions. However, little is known about long-term biofilter performance. In this study, volcanic pumice topsoils (0-10 cm) and subsoils (10-50 cm) were tested for their ability to oxidize a range of CH(4) fluxes over 1 yr. The soils were sampled from an 8-yr-old and a 2-yr-old grassed landfill cover and from a nearby undisturbed pasture away from the influence of CH(4) generated by the decomposing refuse. Methane was passed through the soils in laboratory chambers with fluxes ranging from 0.5 g to 24 g CH(4) m(-3) h(-1). All topsoils efficiently oxidized CH(4). The undisturbed pasture topsoil exhibited the highest removal efficiency (24 g CH(4) m(-3) h(-1)), indicating rapid activation of the methanotroph population to the high CH(4) fluxes. The subsoils were less efficient at oxidizing CH(4) than the topsoils, achieving a maximum rate oxidation rate of 7 g CH(4) m(-3) h(-1). The topsoils exhibited higher porosities; moisture contents; surface areas; and total C, N, and available-P concentrations than the subsoils, suggesting that these characteristics strongly influence growth and activity of the CH(4)-oxidizing bacteria. Soil pH values and available-P levels gradually declined during the trial, indicating a need to monitor chemical parameters closely so that adjustments can be made when necessary. However, other key soil physicochemical parameters (moisture, total C, total N) increased over the course of the trial. This study showed that the selected topsoils were capable of continually sustaining high CH(4) removal rates over 1 yr, which is encouraging for the development of biofilters as a low-maintenance greenhouse gas mitigation technology.  相似文献   
964.
Pasture management practices can affect forage quality and production, animal health and production, and surface and groundwater quality. In a 5-yr study conducted at the North Appalachian Experimental Watershed near Coshocton, Ohio, we compared the effects of two contrasting grazing methods on surface and subsurface water quantity and quality. Four pastures, each including a small, instrumented watershed (0.51-1.09 ha) for surface runoff measurements and a developed spring for subsurface flow collection, received 112 kg N ha(-1) yr(-1) and were grazed at similar stocking rates (1.8-1.9 cows ha(-1)). Two pastures were continuously stocked; two were subdivided so that they were grazed with frequent rotational stocking (5-6 times weekly). In the preceding 5 yr, these pastures received 112 kg N ha(-1) yr(-1) after several years of 0 N fertilizer and were grazed with weekly rotational stocking. Surface runoff losses of N were minimal. During these two periods, some years had precipitation up to 50% greater than the long-term average, which increased subsurface flow and NO(3)-N transport. Average annual NO(3)-N transported in subsurface flow from the four watersheds during the two 5-yr periods ranged from 11.3 to 22.7 kg N ha(-1), which was similar to or less than the mineral-N received in precipitation. Flow and transport variations were greater among seasons than among watersheds. Flow-weighted seasonal NO(3)-N concentrations in subsurface flow did not exceed 7 mg L(-1). Variations in NO(3)-N leached from pastures were primarily due to variable precipitation rather than the effects of continuous, weekly rotational, or frequent rotational stocking practices. This suggests that there was no difference among these grazing practices in terms of NO(3)-N leaching.  相似文献   
965.
Heavy metal accumulation in soil poses serious environmental and health risks, as metals are carried with eroded soils. In this study, 17 different soil erosion and sediment control products were investigated for their effectiveness in controlling transport of particulate heavy metals (Cu, Zn, Pb, Cd). Among the treatments investigated, wood mulch and tackifiers were found to be the most effective in reducing total suspended solids (TSS) and total heavy metal losses. They reduced TSS to an undetectable level during short-term simulation tests. Paper mulch was the only treatment that had no significant reduction in both total metal loss and TSS. Fiber rolls, silt fences, and gravel bags were effective in reducing sediment loss. Although the netting/blanket treatments were not effective in reducing total metal discharge, they significantly reduced sediment loss compared with the control.  相似文献   
966.
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3?) leaching. We sought to assess the trade-offs in NH3 and NO3? losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3? leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha?), and the lowest emissions were from unamended soil (<1 kg NH-N ha?1). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3? leaching losses were small (<25 kg NO3-N ha?1) and similar between treatments, except for the first winter when NO3? leaching was fivefold greater with injection. Because NO3? leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3? leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.  相似文献   
967.
Phosphorus retention in lowland soils depends on redox conditions. The aim of this study was to evaluate how the Fe(III) reduction degree affects phosphate adsorption and precipitation. Two similarly P-saturated, ferric Fe-rich lowland soils, a sandy and a peat soil, were incubated under anaerobic conditions. M?ssbauer spectroscopy demonstrated that Fe(III) in the sandy soil was present as goethite and phyllosilicates, whereas Fe(III) in the peat soil was mainly present as polynuclear, Fe-humic complexes. Following anoxic incubation, extensive formation of Fe(II) in the solids occurred. After 100 d, the Fe(II) production reached its maximum and 34% of the citrate-bicarbonate-dithionite extractable Fe (Fe(CBD)) was reduced to Fe(II) in the sandy soil. The peat soil showed a much faster reduction of Fe(III) and the maximum reduction of 89% of Fe(CBD) was reached after 200 d. Neoformation of a metavivianite/vivianite phase under anoxic conditions was identified by X-ray diffraction in the peat. The sandy soil exhibited small changes in the point of zero net sorption (EPC?) and P(i) desorption with increasing Fe(III) reduction, whereas in the peat soil P desorption increased from 80 to 3100 μmol kg?1 and EPC? increased from 1.7 to 83 μM, after 322 d of anoxic incubation. The fast Fe(III) reduction made the peat soils particularly vulnerable to changes in redox conditions. However, the precipitation of vivianite/metavivianite minerals may control soluble P(i) concentrations to between 2 and 3 μM in the long term if the soil is not disturbed.  相似文献   
968.
The Tarland Catchment Initiative is a partnership venture between researchers, land managers, regulators, and the local community. Its aims are to improve water quality, promote biodiversity, and increase awareness of catchment management. In this study, the effects of buffer strip installations and remediation of a large septic tank effluent were appraised by water physico-chemistry (suspended solids, NO, NH, soluble reactive P) and stream macroinvertebrate indices used by the Scottish Environmental Protection Agency. It was done during before and after interventions over an 8-yr period using a paired catchment approach. Because macroinvertebrate indices were previously shown to respond negatively to suspended solid concentrations in the study area, the installation of buffer strips along the headwaters was expected to improve macroinvertebrate scores. Although water quality (soluble reactive P, NH) improved downstream of the septic tank effluent after remediation, there was no detectable change in macroinvertebrate scores. Buffer strip installations in the headwaters had no measurable effects (beyond possible weak trends) on water quality or macroinvertebrate scores. Either the buffer strips have so far been ineffective or ineffectiveness of assessment methods and sampling frequency and time lags in recovery prevent us detecting reliable effects. To explain and appreciate these constraints on measuring stream recovery, continuous capacity building with land managers and other stakeholders is essential; otherwise, the feasibility of undertaking sufficient management interventions is likely to be compromised and projects deemed unsuccessful.  相似文献   
969.
This paper assesses local biodiversity monitoring methods practiced in the Tonle Sap Lake of Cambodia. For the assessment we used the following criteria: methodological rigor, perceived cost, ease of use (user friendliness), compatibility with existing activities, and effectiveness of intervention. Constraints and opportunities for execution of the methods were also considered. Information was collected by use of: (1) key informant interview, (2) focus group discussion, and (3) researcher's observation. The monitoring methods for fish, birds, reptiles, mammals and vegetation practiced in the research area have their unique characteristics of generating data on biodiversity and biological resources. Most of the methods, however, serve the purpose of monitoring biological resources rather than biodiversity. There is potential that the information gained through local monitoring methods can provide input for long-term management and strategic planning. In order to realize this potential, the local monitoring methods should be better integrated with each other, adjusted to existing norms and regulations, and institutionalized within community-based organization structures.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号