首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
安全科学   2篇
废物处理   1篇
环保管理   6篇
综合类   1篇
基础理论   4篇
污染及防治   8篇
评价与监测   5篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
21.
Abstract: A principal contributor to soil erosion and nonpoint source pollution, agricultural activities have a major influence on the environmental quality of a watershed. Impact of agricultural activities on the quality of water resources can be minimized by implementing suitable agriculture land‐use types. Currently, land uses are designed (location, type, and operational schedule) based on field study results, and do not involve a science‐based approach to ensure their efficiency under particular regional, climatic, geological, and economical conditions. At present, there is a real need for new methodologies that can optimize the selection, design, and operation of agricultural land uses at the watershed scale by taking into account environmental, technical, and economical considerations, based on realistic simulations of watershed response. In this respect, the present study proposes a new approach, which integrates computational modeling of watershed processes, fluvial processes in the drainage network, and modern heuristic optimization techniques to design cost effective land‐use plans. The watershed model AnnAGNPS and the channel network model CCHE1D are linked together to simulate the sediment and pollutant transport processes. Based on the computational results, a multi‐objective function is set up to minimize soil losses, nutrient yields, and total associated costs, while the production profits from agriculture are maximized. The selected iterative optimization algorithm uses adaptive Tabu Search heuristic to flip (switching from one alternative to another) land‐change variables. USDA’s Goodwin Creek experimental watershed, located in Northern Mississippi, is used to demonstrate the capabilities of the proposed approach. The results show that the optimized land‐use design with BMPs using an integrated approach at the watershed level can provide efficient and cost‐effective conservation of the environmental quality by taking into account both productivity and profitability.  相似文献   
22.
This study presents a new method that incorporates modern air dispersion models allowing local terrain and land–sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year’s worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates.

Implications: A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land–sea breeze effects that can be used to manage local air quality in areas of similar microclimates.  相似文献   

23.
This research was done to assess the dechlorination and decomposition of polychlorinated biphenyls (PCBs) in real waste transformer oil through a modified domestic microwave oven (MDMW). The influence of microwave power (200–1000 W), reaction time (30–600 s), polyethylene glycol (PEG) (1.5–7.5 g), iron powder (0.3–1.5 g), NaOH (0.3–1.5 g), and H2O (0.4–2 ml) were investigated on the decomposition efficiency of PCBs existing in real waste transformer oil with MDMW. Obtained data indicate that PEG and NaOH have the greatest influence on decomposition of PCBs; while, iron did not influence, and H2O decreased, the decomposition efficiency of PCBs. Experimental data also indicated that with the optimum amount of variables through a central composites design method (PEG = 5.34 g, NaOH = 1.17 g, Fe = 0.6 g, H2O = 0.8 ml and microwave power 800 W), 78 % of PCBs was degraded at a reaction time of about 6 min. In addition, the PCBs decomposition without using water increased up to 100 % in the reactor with the MDMW at 6 min. Accordingly, results showed that MDMW was a very efficient factor for PCBs decomposition from waste transformer oil. Also, using microwave irradiation, availability and inexpensive materials (PEG, NaOH), and iron suggest this method as a fast, effective, and cheap method for PCB decomposition of waste oils.  相似文献   
24.
Understanding the spatiotemporal relationships between land use/cover changes (LUCC) and groundwater resources is necessary for effective and efficient land use management. In this paper, geographically weighted regression (GWR) and ordinary least squares (OLS) models have been expanded to analyze varying spatial relationships between groundwater quantity changes and LUCC for three periods: 1987–2000, 2000–2010, and 1987–2010 in the Khanmirza Plain of southwestern Iran. For this purpose, TM images were used to generate LUCC (rainfed, irrigated, meadow, and bare lands). Groundwater quantity variables, including groundwater level changes (GLC) and groundwater withdrawal differences (GWD), were gathered from piezometric and agricultural wells data. The analysis of spatial autocorrelation (Moran’s I and local indicators of spatial association ) demonstrated that GWR has a better ability to model spatially varying data with very minimal clustering of residuals. The results R 2 and corrected Akaike’s Information Criterion parameters revealed that the GWR has the lowest similarity in space and time in neighboring situations and it has the high ability to explain more variance in the LUCC as a function of the groundwater quantity changes. All results of the distribution of local R 2 values from GWR confirm our assertion that there is a spatiotemporal relationship between types of land use and each of groundwater quantity variables within the region. According to the t test results from GWR, there are significant differences between the GLC and GWD and the land use types in different places of region in each of the three time series. The GWR results can help decision-makers to make appropriate decisions for future planning.  相似文献   
25.
26.
a (Chl a), silica (Si), and chloride (Cl) through the use of proper statistical techniques. Results indicate no statistically significant changes in the concentrations of TP, Chl a, or Si in the spring or summer from 1981 to 1993. A significant temporal trend of increase in Cl concentration is, however, detected. This is perhaps the strongest evidence that the development of the Lake George watershed has affected lakewater chemistry. In spring, the concentrations of TP, Chl a, Si, and Cl, averaged over all 13 years, were higher in the south basin, but differences are not statistically significant (i.e., P > 0.05). In summer, Si was slightly but significantly lower, and Cl was nonsignificantly higher in the south basin. Significant interactions between temporal and spatial changes are detected based only on summer values of TP and Chl a, indicating differential trends of change for these two variables in the south and north basins during the last 13 years.  相似文献   
27.
Acid-neutralizing capacity (ANC) and pH were measured weekly from October 1991 through September 2001 in three streams in the western Adirondack Mountain region of New York to identify trends in stream chemistry that might be related to changes in acidic deposition. A decreasing trend in atmospheric deposition of SO4/2- was observed within the region over the 10-yr period, although most of the decrease occurred between 1991 and 1995. Both ANC and pH were inversely related to flow in all streams; therefore, a trend analysis was conducted on (i) the measured values of ANC and pH and (ii) the residuals of the concentration-discharge relations. In Buck Creek, ANC increased significantly (p < 0.05) over the 10 yr, but the residuals of ANC showed no trend (p > 0.10). In Bald Mountain Brook, ANC and residuals of ANC increased significantly (p < 0.01), although the trend was diatonic-a distinct decrease from 1991 to 1996 was followed by a distinct increase from 1996 to 2001. In Fly Pond outlet, ANC and residuals of ANC increased over the study period (p < 0.01), although the trend of the residuals resulted largely from an abrupt increase in 1997. In general, the trends observed in the three streams are similar to results presented for Adirondack lakes in a previous study, and are consistent with the declining trend in atmospheric deposition for this region, although the observed trends in ANC and pH in streams could not be directly attributed to the trends in acidic deposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号