首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5911篇
  免费   339篇
  国内免费   2151篇
安全科学   508篇
废物处理   336篇
环保管理   461篇
综合类   3303篇
基础理论   929篇
环境理论   1篇
污染及防治   2115篇
评价与监测   251篇
社会与环境   245篇
灾害及防治   252篇
  2024年   18篇
  2023年   114篇
  2022年   305篇
  2021年   253篇
  2020年   194篇
  2019年   183篇
  2018年   238篇
  2017年   282篇
  2016年   343篇
  2015年   404篇
  2014年   449篇
  2013年   618篇
  2012年   479篇
  2011年   550篇
  2010年   416篇
  2009年   361篇
  2008年   381篇
  2007年   330篇
  2006年   346篇
  2005年   246篇
  2004年   195篇
  2003年   182篇
  2002年   195篇
  2001年   190篇
  2000年   176篇
  1999年   158篇
  1998年   162篇
  1997年   121篇
  1996年   109篇
  1995年   87篇
  1994年   70篇
  1993年   63篇
  1992年   54篇
  1991年   29篇
  1990年   37篇
  1989年   13篇
  1988年   9篇
  1987年   12篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有8401条查询结果,搜索用时 0 毫秒
511.
512.
从企业工艺和产品特点出发,分析了石油炼制企业主要水污染物的排放量与企业加工量、加工工艺、加工装置、末端治理设施之间的简单逻辑关系,提出了一种基于企业规模、生产装置特征和污染治理技术的石油炼化企业水污染物排放量复杂系数核算方法。通过与实际监测数据的对比,该方法的误差满足总量核算中石油炼化企业排放量核算的要求,为行业总量减排核算提供了一种新的方法。  相似文献   
513.
对2012年清水江流域福泉市段10个监控断面监测数据进行分析,结果表明:10个断面的TP污染最为严重,存在严重超标情况;通过相关性分析,氟化物、TP和NH3-N三者呈极显著相关关系,具有同一来源;根据综合污染负荷指数可知,高坪河、市化肥厂、川恒公司排口上游、黑塘桥、越都取水口5个断面能够达到III类水质的要求;根据Tomlinson污染负荷指数法,可判断福泉市水体整体处于中等污染水平。  相似文献   
514.
检测细胞DNA断裂损伤效应的彗星实验法的改良   总被引:1,自引:0,他引:1  
为了解决彗星实验过程中常出现的脱胶、细胞核分离操作繁琐、重复性低等问题,对彗星实验方法进行了改良,初步建立了彗星实验的快速操作流程。结果显示,通过对载玻片进行预处理,可确保凝胶悬挂均匀;采用改良机械法分离的细胞核浓度适中;以0.5%(w/v)涂层琼脂糖作为基层、以1.5%(w/v)低熔点包埋琼脂糖作为叠加层的"双层凝胶法",辅以"推片法"铺胶,操作便捷且不发生脱胶现象;细胞核膜经裂解处理后再进行电泳和荧光观察,彗星图像清晰,杂质少。应用改良后的彗星实验方法,操作简便,耗时更短,实验效果良好,可快速检测出细胞DNA损伤效应。  相似文献   
515.
Excessive nitrogen (N) and phosphorus (P) loading of aquatic ecosystems is a leading cause of eutrophication and harmful algal blooms worldwide, and reducing nutrient levels in water has been a primary management objective. To provide a rational protection strategy and predict future trends of eutrophication in eutrophic lakes, we need to understand the relationships between nutrient ratios and nutrient limitations. We conducted a set of outdoor bioassays at the shore of Lake Taihu. It showed that N only additions induced phytoplankton growth but adding only P did not. Combined N plus P additions promoted higher phytoplankton biomass than N only additions, which suggested that both N and P were deficient for maximum phytoplankton growth in this lake (TN:TP = 18.9). When nutrients are present at less than 7.75-13.95 mg/L TN and 0.41-0.74 mg/L TP, the deficiency of either N or P or both limits the growth of phytoplankton. N limitation then takes place when the TN:TP ratio is less than 21.5-24.7 (TDN:TDP was 34.2-44.3), and P limitation occurs above this. Therefore, according to this ratio, controlling N when N limitation exists and controlling P when P deficiency is present will prevent algal blooms effectively in the short term. But for the long term, a persistent dual nutrient (N and P) management strategy is necessary.  相似文献   
516.
Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria (PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+ under the light-anaerobic condition. Results showed that with the optimal Mg2+ dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L, and biomass yield also was improved by 60%. Chemical Oxygen Demand (COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2+ could promote the content of bacteriochlorophyll in photosynthesis because Mg2+ is the bacteriochlorophyll active center, and thus improved adenosine triphosphate (ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials (biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2+, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively.  相似文献   
517.
Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the community composition of AMF under natural conditions in soils contaminated by antimony (Sb). The objective of this study was to investigate the characteristics of AMF molecular diversity, and to explore the effects of Sb content and soil properties on the AMF community structure in an Sb mining area. Four Sb mine spoils and one adjacent reference area were selected from around the Xikuangshan mine in southern China. The association of AMF molecular diversity and community composition with the rhizosphere soils of the dominant plant species was studied by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Results from all five studied sites showed that the diversity of AMF decreased with increasing Sb concentration. Principal component analysis (PCA) indicated that the AMF community structure was markedly different among these groups. Further redundancy analysis (RDA) showed that Sb contaminationwas the dominating factor influencing the AMF community structure in the Sb mine area. However, the multivariate analysis showed that, apart from the soil Sb content, extractable nitrogen content and organic matter content also attributed to AMF sequence distribution type. Some AMF sequences were only found in the highly contaminated area and these might be ideal candidates for improving phytoremediation efficiency in Sb mining regions. Gene sequencing analysis revealed that most species were affiliated with Glomus, suggesting that Glomus was the dominant AMF genus in the studied Sb mining area.  相似文献   
518.
The technique of DGT (diffusive gradients in thin films) using three diffusive gel thicknesses was applied to estimate the mobility and bioavailability of heavy metals in sediments and porewater of Lake Taihu, China. The DGT results showed significantly positive correlations between Co, Pb, Cd and Mn, and Ni and Fe concentrations in porewater. Cu and Zn showed a significantly negative correlation with Mn, due to Cu combination with carbonates and Zn derived from agricultural pollution, respectively. The rank order of average concentrations of Co, Ni and Cd at each station was DGT1.92 > DGT0.78 > DGT0.39, suggesting stronger resupply from sediments to porewater when using thicker diffusive gels. Comparing centrifugation and DGT measurements, Co, Ni and Cd are highly labile; Mn and Fe are moderately labile; and Cu, Zn and Pb are slightly labile. The variations of AVS concentrations in sediment cores indicate that metal sulfides in deeper layers are easily diffused into surface sediments.  相似文献   
519.
The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output, surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from 1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields. Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by 16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010, partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk, decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields.  相似文献   
520.
NOx emissions from biogenic sources in soils play a significant role in the gaseous loss of soil nitrogen and consequent changes in tropospheric chemistry. In order to investigate the characteristics of NOx fluxes and factors influencing these fluxes in degraded sandy grasslands in northern China, diurnal and spatial variations of NOx fluxes were measured in situ. A dynamic flux chamber method was used at eight sites with various vegetation coverages and soil types in the northern steppe of China in the summer season of 2010. Fluxes of NOx from soils with plant covers were generally higher than those in the corresponding bare vegetation-free soils, indicating that the canopy plays an important role in the exchange of NOx between soil and air. The fluxes of NOx increased in the daytime, and decreased during the nighttime, with peak emissions occurring between 12:00 and 14:00. The results of multiple linear regression analysis indicated that the diurnal variation of NOx fluxes was positively correlated with soil temperature (P < 0.05) and negatively with soil moisture content (P < 0.05). Based on measurement over a season, the overall variation in NOx flux was lower than that of soil nitrogen contents, suggesting that the gaseous loss of N fromthe grasslands of northern China was not a significant contributor to the high C/N in the northern steppe of China. The concentration of NOx emitted from soils in the region did not exceed the 1-hr National Ambient Air Quality Standard (0.25 mg/m3).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号