首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   0篇
  国内免费   1篇
安全科学   5篇
废物处理   2篇
环保管理   4篇
综合类   57篇
基础理论   14篇
污染及防治   21篇
评价与监测   2篇
社会与环境   5篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   13篇
  2014年   4篇
  2013年   12篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1985年   1篇
  1977年   1篇
  1975年   1篇
  1966年   1篇
  1961年   2篇
  1954年   3篇
  1953年   1篇
  1952年   1篇
  1951年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
21.
Multipronuclear human eggs are frequent after in vitro fertilization. Their chromosome analysis can provide useful information. Before cleavage it can confirm the suspected poly-ploidy. Among the cleaved multipronuclear eggs it provides an estimation of the incidence of the possible return to diploidy. Ninety-four multipronuclear eggs were fixed at the first, second, or third cleavage according to the air-drying method of Tarkowski with or without colchicine exposure: 60 were successfully analysed. Twelve were stopped before cleavage (six without colchicine treatment and six with colchicine treatment). They were polyploid, confirming the cytological observation. Forty-eight eggs cleaved and were stopped by colchicine treatment and karyotyped. Seventeen eggs (35 per cent) had produced diploid embryos. Mosaicism was frequent (15 cases, 31 per cent). Triploidy was not frequent (8 eggs, 17 per cent). Haploidy constituted the remaining cases (8 eggs, 17 per cent). Our data indicate that the initial count of pronuclei is a reliable test. Multipronuclear one-cell oocytes were confirmed to be polyploid. Furthermore, the developmental capacity of the multipronuclear oocytes is variable. Most of them cleaved. However, many multipronuclear oocytes led to diploid cleaving eggs.  相似文献   
22.
23.

Objective

The purpose of this study was to explore the diagnostic yield and clinical utility of trio-based rapid whole exome sequencing (rWES) in pregnancies of fetuses with a wide range of congenital anomalies detected by ultrasound imaging.

Methods

In this observational study, we analyzed the first 54 cases referred to our laboratory for prenatal rWES to support clinical decision making, after the sonographic detection of fetal congenital anomalies. The most common identified congenital anomalies were skeletal dysplasia (n = 20), multiple major fetal congenital anomalies (n = 17) and intracerebral structural anomalies (n = 7).

Results

A conclusive diagnosis was identified in 18 of the 54 cases (33%). Pathogenic variants were detected most often in fetuses with skeletal dysplasia (n = 11) followed by fetuses with multiple major fetal congenital anomalies (n = 4) and intracerebral structural anomalies (n = 3). A survey, completed by the physicians for 37 of 54 cases, indicated that the rWES results impacted clinical decision making in 68% of cases.

Conclusions

These results suggest that rWES improves prenatal diagnosis of fetuses with congenital anomalies, and has an important impact on prenatal and peripartum parental and clinical decision making.  相似文献   
24.
25.
26.
27.
BACKGROUND, AIMS AND SCOPE: In a previous study, we explored the use of acetate, lactate, molasses, Hydrogen Release Compound (HRC, which is based on a biodegradable poly-lactate ester), methanol and ethanol as carbon source and electron donor to promote bacterial sulfate reduction in batch experiments, this with regards to applying an in situ metal precipitation (ISMP) process as a remediation tool to treat heavy metal contaminated groundwater at the site of a nonferrous metal work company. Based on the results of these batch tests, column experiments were conducted with lactate, molasses and HRCI as the next step in our preliminary study for a go-no go decision for dimensioning an on site application of the ISMP process that applies the activity of the endogenous population of sulfate-reducing bacteria (SRB). Special attention was given to the sustainability of the metal precipitation process under circumstances of changing chemical oxygen demand (COD) to [SO4(2-)] ratios or disrupted substrate supply. METHODS: To optimize the ISMP process, an insight is needed in the composition and activity of the indigenous SRB community, as well as information on the way its composition and activity are affected by process conditions such as the added type of C-source/ electron donor, or the presence of other prokaryotes (e.g. fermenting bacteria, methane producing Archaea, acetogens). Therefore, the biological sulfate reduction process in the column experiments was evaluated by combining classical analytical methods [measuring heavy metal concentration, SO4(2-)-concentration, pH, dissolved organic carbon (DOC)] with molecular methods [denaturing gradient gel electrophoresis (DGGE) fingerprinting and phylogenetic sequence analysis] based on either the 16S rRNA-gene or the dsr (dissimilatory sulfite reductase) gene, the latter being a specific biomarker for SRB. RESULTS AND DISCUSSION: All carbon sources tested promoted SRB activity, which resulted within 8 weeks in a drastic reduction of the sulfate and heavy metal contents in the column effluents. However, unexpected temporal decreases in the efficiency of the ISMP process, accompanied by the release of precipitated metals, were observed for most conditions tested. The most dramatic observation of the failing ISMP process was observed within 12 weeks for the molasses amended column. Subsequent lowering the COD/ SO4(2-) ratio from 1.9 to 0.4 did not alter the outcome of sulfate reduction and metal precipitation efficiency in this set-up. Remarkably, after 6 months of inactivity, bacterial sulfate reduction was recovered in the molasses set up when the original COD/ SO4(2-) ratio of 1.9 was applied again. Intentional disruption of the lactate and HRC supplies resulted in an immediate stagnation of the ISMP processes and in a rapid release of precipitated metals into the column effluents. However, the ISMP process could be restored after substrate amendment. 16S rDNA-based DGGE analysis revealed that the SRB population, in accordance with the results of the previously performed batch experiments, consisted exclusively of members of the genus Desulfosporosinus. The community of Archaea was characterized by sequencing amplicons of archaeal and methanogen-specific PCR reactions. This approach only revealed the presence of non-thermophilic Crenarchaeota, a novel group of organisms which is only distantly related to methane producing Euryarchaeota. DGGE on the dsrB genes was successfully used to link the results of the ISMP process to the community composition of the sulfate reducing bacteria. CONCLUSIONS: In the case of an intentional disruption of substrate supply, the ISMP process failed most likely because the growth and activity of the indigenous SRB community stopped due to a lack of a carbon and electron donor. On the other hand, the cause of the sudden temporal shortcomings of the ISMP process in the presence of different substrates was not immediately clear. It was first thought to be the result of competition between methanogenic prokaryotes (MP) and sulfate reducers, since the formation of small amounts of CH4 (0.01-0.03 ppm ml(-1) was detected. However, the results of molecular analyzes indicate that methanogens do not constitute a major fraction of the microbial communities that were enriched in the column experiments. Therefore, we postulate that the SRB population becomes inhibited by the formed metal sulfides. RECOMMENDATION AND PERSPECTIVE: Our results indicate that the ISMP process is highly dependent on SRB-stimulation by substrate amendments and suggest that this remedial approach might not be viable for long-term application unless substrate amendments are continued and environmental conditions are strictly controlled. This will include the removal of affected aquifer material from the metal precipitation zone at the end of the remediation process, or removal of metal precipitates when the microbial activity decreases. Additional tests are necessary to investigate what will happen when clear groundwater passes through the reactive zone while no more C-sources are amended and all indigenous carbon is consumed. Also, the effects of dramatic increases in sulfate- or HM-concentrations on the SRB-community and the concomitant ISMP process need to be studied in more detail.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号