首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44544篇
  免费   453篇
  国内免费   397篇
安全科学   1282篇
废物处理   1837篇
环保管理   5890篇
综合类   6677篇
基础理论   12333篇
环境理论   26篇
污染及防治   11628篇
评价与监测   3028篇
社会与环境   2387篇
灾害及防治   306篇
  2022年   347篇
  2021年   372篇
  2020年   269篇
  2019年   350篇
  2018年   661篇
  2017年   648篇
  2016年   973篇
  2015年   765篇
  2014年   1116篇
  2013年   3512篇
  2012年   1331篇
  2011年   1914篇
  2010年   1625篇
  2009年   1627篇
  2008年   1906篇
  2007年   2025篇
  2006年   1819篇
  2005年   1529篇
  2004年   1508篇
  2003年   1438篇
  2002年   1398篇
  2001年   1845篇
  2000年   1293篇
  1999年   815篇
  1998年   631篇
  1997年   610篇
  1996年   664篇
  1995年   664篇
  1994年   617篇
  1993年   573篇
  1992年   570篇
  1991年   520篇
  1990年   528篇
  1989年   553篇
  1988年   489篇
  1987年   406篇
  1986年   365篇
  1985年   410篇
  1984年   419篇
  1983年   440篇
  1982年   452篇
  1981年   370篇
  1980年   330篇
  1979年   385篇
  1978年   313篇
  1977年   272篇
  1976年   273篇
  1975年   254篇
  1974年   238篇
  1972年   252篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
771.
772.
773.
774.
The larvae and pupae of the ladybird Thalassa saginata develop inside colonies of the dolichoderine ant Dolichoderus bidens. This association is the first specific and obligatory relationship recorded between ants and ladybirds. The ants provide shelter and protection to the larvae but the diet of the latter remains unclear. The integration of T. saginata larvae into the ant colonies is achieved by mimicking the cuticular patterns of the ants brood. Moreover, the larvae secrete substances from their hairs and anal gland that are likely to enhance their attractiveness.  相似文献   
775.
The climate impact from the useof peat for energy production in Sweden hasbeen evaluated in terms of contribution toatmospheric radiative forcing. This wasdone by attempting to answer the question`What will be the climate impact if onewould use 1 m2 of mire for peatextraction during 20 years?'. Two differentmethods of after-treatment were studied:afforestation and restoration of wetland.The climate impact from a peatland –wetland scenario and a peatland –forestation – bioenergy scenario wascompared to the climate impact from coal,natural gas and forest residues.Sensitivity analyses were performed toevaluate which parameters that areimportant to take into consideration inorder to minimize the climate impact frompeat utilisation. In a `multiple generationscenario' we investigate the climate impactif 1 Mega Joule (MJ) of energy is produced every yearfor 300 years from peat compared to otherenergy sources.The main conclusions from the study are:?The accumulated radiative forcing from the peatland – forestation – bioenergy scenario over a long time perspective (300 years) is estimated to be 1.35 mJ/m2/m2 extraction area assuming a medium-high forest growth rate and medium original methane emissions from the virgin mire. This is below the corresponding values for coal 3.13 mJ/ m2/ m2 extraction area and natural gas, 1.71 mJ/ m2/ m2 extraction area, but higher than the value for forest residues, 0.42 mJ/ m2/ m2 extraction area. A `best-best-case' scenario, i.e. with high forest growth rate combined with high `avoided' methane (CH4) emissions, will generate accumulated radiative forcing comparable to using forest residues for energy production. A `worst-worst-case' scenario, with low growth rate and low `avoided' CH4 emissions, will generate radiative forcing somewhere in between natural gas and coal.?The accumulated radiative forcing from the peatland – wetland scenario over a 300-year perspective is estimated to be 0.73 –1.80 mJ/ m2/ m2 extraction area depending on the assumed carbon (C) uptake rates for the wetland and assuming a medium-high methane emissions from a restored wetland. The corresponding values for coal is 1.88 mJ/ m2/ m2 extraction area, for natural gas 1.06 mJ/ m2/ m2 extraction area and for forest residues 0.10 mJ/ m2/ m2 extraction area. A `best-best-case' scenario (i.e. with high carbon dioxide CO2-uptake combined with high `avoided' CH4 emissions and low methane emissions from the restored wetland) will generate accumulated radiative forcing that decreases and reaches zero after 240 years. A `worst-worst-case' (i.e. with low CO2-uptake combined with low `avoided' CH4 emissions and high methane emissions from the restored wetland) will generate radiative forcing higher than coal over the entire time period.?The accumulated radiative forcing in the `multiple generations' – scenarios over a 300-year perspective producing 1 MJ/year is estimated to be 0.089 mJ/ m2 for the scenario `Peat forestation – bioenergy', 0.097 mJ/ m2 for the scenario `Peat wetland with high CO2-uptake' and 0.140 mJ/ m2 for the scenario `Peat wetland with low CO2-uptake'. Corresponding values for coal is 0.160 mJ/ m2, for natural gas 0.083 mJ/ m2 and for forest residues 0.015 mJ/ m2. Using a longer time perspective than 300 years will result in lower accumulated radiative forcing from the scenario `Peat wetland with high CO2-uptake'. This is due to the negative instantaneous forcing that occurs after 200 years for each added generation.?It is important to consider CH4 emissions from the virgin mire when choosing mires for utilization. Low original methane emissions give significantly higher total climate impact than high original emissions do.?Afforestation on areas previously used for peat extraction should be performed in a way that gives a high forest growth rate, both for the extraction area and the surrounding area. A high forest growth rate gives lower climate impact than a low forest growth rate.?There are great uncertainties related to the data used for emissions and uptake of greenhouse gases in restored wetlands. The mechanisms affecting these emissions and uptake should be studied further.  相似文献   
776.
777.
778.
779.
780.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号