Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%). 相似文献
Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated. 相似文献
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both. 相似文献
To support EU policy, indicators of pesticide leaching at the European level are required. For this reason, a metamodel of the spatially distributed European pesticide leaching model EuroPEARL was developed. EuroPEARL considers transient flow and solute transport and assumes Freundlich adsorption, first-order degradation and passive plant uptake of pesticides. Physical parameters are depth dependent while (bio)-chemical parameters are depth, temperature, and moisture dependent. The metamodel is based on an analytical expression that describes the mass fraction of pesticide leached. The metamodel ignores vertical parameter variations and assumes steady flow. The calibration dataset was generated with EuroPEARL and consisted of approximately 60,000 simulations done for 56 pesticides with different half-lives and partitioning coefficients. The target variable was the 80th percentile of the annual average leaching concentration at 1-m depth from a time series of 20 yr. The metamodel explains over 90% of the variation of the original model with only four independent spatial attributes. These parameters are available in European soil and climate databases, so that the calibrated metamodel could be applied to generate maps of the predicted leaching concentration in the European Union. Maps generated with the metamodel showed a good similarity with the maps obtained with EuroPEARL, which was confirmed by means of quantitative performance indicators. 相似文献
The performance of an aerated submerged fixed-film reactor (ASFFR) under simultaneous organic and ammonium loading and its effect on nitrification was studied. Organic loadings varied in the range of 1.93 to 5.29 g chemical oxygen demand (COD) m-2 d-1 and NH4-N loadings were in the range of 116 to 318 mg NH4-N m-2 d-1. Increments of loading rates were obtained both by increasing the flow rate and increasing the influent substrate in individual pilot runs. Results showed that with organic loading rates up to 3.97 g COD m-2 d-1, complete nitrification was achievable. Although high organic loading such as 5.29 g COD m-2 d-1 could cause nitrification to stop, shifting to lower organic loadings made nitrification start and set rapidly to its previous steady-state concentrations. Comparison of results showed that in the ASFFR, nitrification would be severely affected by an organic loading rate of 5.29 g COD m-2 d-1 by increasing either the flow or the influent substrate. It should be noted that the average value of dissolved oxygen was 3.4 mg L-1 with an air supply of 15 L min-1, and there was no indication of oxygen limitation. The results of this study show the flexibility of ASFFRs under changing organic loads. Furthermore, for achieving complete nitrification and optimum application of these reactors for protecting receiving water from the environmental hazards of ammonium, the maximum organic loading that would present complete nitrification should be considered. 相似文献
Long-term field trials using lignite fly ash (LFA) were carried out in rice crops during the period 1996-2000 at Mine I, Neyveli Lignite Corporation, Tamil Nadu. LFA, being alkaline and endowed with an excellent pozzolanic nature, silt loam texture, and plant nutrients, has the potential to improve the texture, fertility, and crop productivity of mine spoil. The rice crops were the first, third, fifth, and sixth crops in rotation. The other crops, such as green gram (second) and sun hemp (fourth), were grown as green manure. For experimental trials, LFA was applied at various dosages (0, 5, 10, 20, 50, 100, and 200 t/ha), with and without press mud (10 t/ha), before cultivation of the first crop. Repeat applications of LFA were made at the same dosages in treatments of up to 50 t/ha (with and without press mud) before cultivation of the third and fifth crops. Press mud, a lightweight organic waste product from the sugar industry, was used as an organic amendment and source of plant nutrients. Also, a recommended dosage of chemical fertilizer, along with gypsum, humic acid, and biofertilizer as supplementing agents, was applied in all the treatments, including control. With one-time and repeat applications of LFA, from 5 to 20 t/ha (with and without press mud), the crop yield (grain and straw) increased significantly (p < 0.05), in the range from 3.0 to 42.0% over the corresponding control. The maximum yield was obtained with repeat applications of 20 t/ha of LFA with press mud in the third crop. The press mud enhanced the yield in the range of 1.5-10.2% with various dosages of LFA. The optimum dosage of LFA was 20 t/ha for both one-time and repeat applications. Repeat applications of LFA at lower dosages of up to 20 t/ha were more effective in increasing the yield than the corresponding one-time applications of up to 20 t/ha and repeat applications at 50 t/ha. One-time and repeat applications of LFA of up to 20 t/ha (with and without press mud), apart from increasing the yield, evinced improvement in the texture and fertility of mine spoil and the nutrient content of crop produce. Furthermore, some increase in the content of trace and heavy metals and the level of gamma-emitters in the mine spoil and crop produce was observed, but well within the permissible limits. The residual effect of LFA on succeeding crops was also encouraging in terms of eco-friendliness. Beyond 20 t/ha of LFA, the crop yield decreased significantly (p < 0.05), as a result of the formation of hardpan in the mine spoil and possibly the higher concentration of soluble salts in the LFA. However, the adverse effects of soluble salts were annulled progressively during the cultivation of succeeding crops. A plausible mechanism for the improved fertility of mine spoil and the carryover or uptake of toxic trace and heavy metals and gamma-emitters in mine spoil and crop produce is also discussed. 相似文献
The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate (CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia andrei exposed to soils from a gradient of CCA wood preservative contamination near Hartola, Finland. In soils contaminated with 1480–1590 mg Cr/kg dry soil, 642–791 mg Cu/kg dry soil, and 850–2810 mg Ag/kg dry soil, uptake and elimination kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (< 0.1), but high for As at 0.54–1.8. The potential risk of CCA exposure for the terrestrial ecosystem therefore is mainly due to As.
Concentrations of eight elements were measured in Chelonia mydas and Lepidochelys olivacea eggs collected along the Pacific coast of Panama. Manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), and mercury (Hg) concentrations were similar to previous reports of these species from around the world, while lead (Pb) was lower than previous reports. Cd posed the highest health risk to people who regularly eat the eggs, with average consumption rates leading to target hazard quotients (THQ) of up to 0.35 ± 0.15. Our conclusions indicate that current turtle egg consumption in isolated, coastal Pacific communities may pose a health concern for young children, and that youth and young adults should limit their consumption of turtle eggs to reduce their total intake of nonessential metals. 相似文献
Scrap preheating in foundries is a technology that saves melting energy, leading to economic and environmental benefits. The proposed method in this paper utilizes solar thermal energy for preheating scrap, effected through a parabolic trough concentrator that focuses sunlight onto a receiver which carries the metallic scrap. Scraps of various thicknesses were placed on the receiver to study the heat absorption by them. Experimental results revealed the pattern with which heat is gained by the scrap, the efficiency of the process and how it is affected as the scrap gains heat. The inferences from them gave practical guidelines on handling scraps for best possible energy savings. Based on the experiments conducted, preheat of up to 160 °C and a maximum efficiency of 70 % and a minimum efficiency of 40 % could be achieved across the time elapsed and heat gained by the scrap. Calculations show that this technology has the potential to save around 8 % of the energy consumption in foundries. Cumulative benefits are very encouraging: 180.45 million kWh of energy savings and 203,905 t of carbon emissions cut per year across the globe. This research reveals immense scope for this technology to be adopted by foundries throughout the world. 相似文献