Nowadays, adaptation has become a key focus of the scientific and policy-making communities and is a major area of discussion in the multilateral climate change process. As climate change is projected to hit the poorest the hardest, it is especially important for developing countries to pay particular attention to the management of natural resources and agricultural activities. In most of these countries such as Cameroon, forest can play important role in achieving broader climate change adaptation goals. However, forest generally receives very little attention in national development programme and strategies such as policy dialogues on climate change and poverty reduction strategies. Using a qualitative approach to data collection through content analysis of relevant Cameroon policy documents, the integration of climate change adaptation was explored and the level of attention given to forests for adaptation analysed. Results indicate that, with the exception of the First National Communication to UNFCCC that focused mostly on mitigation and related issues, current policy documents in Cameroon are void of tangible reference to climate change, and hence failing in drawing the relevance of forest in sheltering populations from the many projected impacts of climate change. Policies related to forest rely on a generalized concept of sustainable forest management and do not identify the specific changes that need to be incorporated into management strategies and policies towards achieving adaptation. The strategies and recommendations made in those documents only serve to improve understanding of Cameroon natural resources and add resilience to the natural systems in coping with anthropogenic stresses. The paper draws attention to the need to address the constraints of lack of awareness and poor flow of information on the potentials of forests for climate change adaptation. It highlights the need for integrating forest for adaptation into national development programmes and strategies, and recommends a review of the existing environmental legislations and their implications on poverty reduction strategy and adaptation to climate change. 相似文献
Objective: This article describes the patterns of self-reported driving under the influence of alcohol (DUIA) and driving under the influence of cannabis (DUIC) among licensed Ontario students in 2009 and examines their associations with graduated licensing, risk taking, and substance use problems for understanding DUIA and DUIC behaviors. Ontario's graduated licensing system requires new drivers to hold a G1 license for a minimum of 8 months and a G2 license for a minimum of 12 months before a full and unrestricted G license can be obtained. Among other restrictions, G1 drivers must maintain a 0 blood alcohol content (BAC), have an experienced driver in the passenger seat, not drive on any high-speed expressways, and not drive between the hours of midnight and 5 a.m. A G2 license is more similar to a G license, with fewer restrictions.
Method: This study analyzed data from the 2009 Ontario Student Drug Use and Health Survey (OSDUHS). The OSDUHS is a biennial population-based survey of students (grades 7 to 12) in Ontario, Canada.
Results: The results showed that 16.3% of licensed students in Ontario reported DUIC and 11.5% reported DUIA during the past year. After controlling for the effect of age, type of license emerged as a robust predictor for both DUIA and DUIC behavior, because students with a G2 and full license were significantly more likely to report DUIA and DUIC than drivers with a G1 license. Multivariate analyses suggested that risk-seeking behaviors were more important for understanding DUIA behavior than for DUIC behavior. Elevated problem indicators for alcohol and for cannabis were associated with DUIA and DUIC, respectively.
Conclusions: Though much attention has been paid to drinking and driving among adolescents, this research shows that more Ontario students now report driving after cannabis use than after drinking alcohol. The results identify important correlates of both behaviors that may be useful for prevention purposes. 相似文献
The Paraiba do Sul (PSR) and Guandu Rivers (GR) water diversion system (120 km long) is located in the main industrial pole of Brazil and supplies drinking water for 9.4 million people in the metropolitan region of Rio de Janeiro. This study aims to discern the trace metals dynamics in this complex aquatic system. We used a combined approach of geochemical tools such as geochemical partitioning, Zn isotopes signatures, and multivariate statistics. Zinc and Pb concentrations in Suspended Particulate Matter (SPM) and sediments were considerably higher in some sites. The sediment partition of As, Cr, and Cu revealed the residual fraction (F4) as the main fraction for these elements, indicating low mobility. Zinc and Pb were mostly associated with the exchangeable/carbonate (F1) and the reducible (F2) fractions, respectively, implying a higher susceptibility of these elements to being released from sediments. Zinc isotopic compositions of sediments and SPM fell in a binary mixing source process between lithogenic (δ66/64ZnJMC ≈ + 0.30‰) and anthropogenic (δ66/64ZnJMC ≈ + 0.15‰) end members. The lighter δ66/64ZnJMC values accompanied by high Zn concentrations in exchangeable/carbonate fraction (ZnF1) enable the tracking of Zn anthropogenic sources in the studied rivers. Overall, the results indicated that Hg, Pb, and Zn had a dominant anthropogenic origin linked to the industrial activities, while As, Cr, and Cu were mainly associated with lithogenic sources. This work demonstrates how integrating geochemical tools is valuable for assessing geochemical processes and mixing source effects in anthropized river watersheds. 相似文献
To date, the field of contaminant geochemistry—which deals with the study of chemical interactions in soil and aquifer environments—has focused mainly on pollutant toxicity, retention, persistence, and transport and/or on remediation of contaminated sites. Alteration of subsurface physicochemical properties by anthropogenic chemicals, which reach the land surface as a result of human activity, has been essentially neglected. Contaminant-induced changes in subsurface properties are usually considered as deviations from a normal geological environment, which will disappear under natural attenuation or following remediation procedures. However, contaminants may in many cases cause irreversible changes in both structure and properties of the soil–subsurface geosystem between the land surface and groundwater. The time scales associated with these changes are on a “human time scale”, far shorter than geological scales relevant for geochemical processes. In this review, we draw attention to a new perspective of contaminant geochemistry, namely, irreversible changes in the subsurface as a result of anthropogenic chemical pollution. We begin by briefly reviewing processes governing contaminant–subsurface interactions. We then survey how chemical contamination causes irreversible changes in subsurface structure and properties. The magnitude of the anthropogenic impact on the soil and subsurface is linked directly to the amounts of chemical contaminants applied and/or disposed of on the land surface. This particular aspect is of major importance when examining the effects of humans on global environmental changes. Consideration of these phenomena opens new perspectives for the field of contaminant geochemistry and for research of human impacts on the soil and subsurface regimes. 相似文献
Modelling radionuclide transfers between seawater and marine species on a short time scale basis requires being able to take into account the transfer kinetics. This means (1) to implement the effect of the biological half-lives of radionuclides together with the concentration factor in the calculation of transfers and (2), to get these kinetic parameters for each element and species. Biological half-lives are usually determined from laboratory labelling experiments with the challenge to match natural environmental conditions. The present work proposes a simple model that implements the effect of kinetic parameters in the calculation of transfers. This model is also used to derive the biological half-life and the concentration factor for 137Cs from time-series measurements of environmental concentrations in seawater and in the brown alga Fucus serratus, as an example. These transfer parameters are finally used to predict the Cs activities in Fucus serratus on the English Channel shores. 相似文献
The European Union Water Framework Directive requires the achievement of environmental objectives for the ecological quality of water bodies. A comparable implementation of the Directive throughout member countries of the European Union is necessary to verify equal protection of surface waters. The Directive specifies that member states determine ecological quality by means of biological indices. To improve comparability of water quality assessment, this research carried out an intercalibration trial between the Slovak Saprobic Index and the Italian protocol of the Extended Biotic Index, as part of a cooperative program between Italy and the Slovak Republic. When assessing streams with no or low pollution, statistics showed similar results for both methods. In contrast, the comparison of indices was not accurate in the case of severely affected waters. Reliable conversion formulas are feasible to transform the Italian Extended Biotic Index into the Slovak Saprobic Index, and not vice versa. 相似文献
Environmental Science and Pollution Research - Losartan potassium (LOS) is one of the most antihypertensives used in the world, and its presence in environmental matrices can cause impacts to... 相似文献
Environmental Science and Pollution Research - Solar-driven photocatalysis is a promising water-cleaning and energy-producing technology that addresses some of the most urgent engineering problems... 相似文献