首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
废物处理   1篇
环保管理   2篇
基础理论   2篇
污染及防治   29篇
评价与监测   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有35条查询结果,搜索用时 234 毫秒
11.
Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO? and O2-? in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly to direct oxidation by HO?, while O2-? strengthened the generation of HO? by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl-, HCO3-, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl- production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater.  相似文献   
12.
The objective of this study was to investigate the impact of length scale (travel distance) on the retention and transport of Cryptosporidium oocysts in a sandy soil. Long columns (1 and 2 meters) and an in situ lysimeter (4 m) were used to allow investigation of larger-scale transport under controlled conditions. Significant retention of oocysts was observed, with the magnitude of removal from solution ranging between 2 to 5 logs. While the removal was greater for longer travel distances (or residence times), the increase was not log-linear. This observation indicates that oocyst transport was not consistent with standard colloid filtration theory. The observed behavior is speculated to arise, at least in part, from intrapopulation variability in oocyst properties. The results of this study indicate that while Cryptosporidium oocysts may be expected to experience significant retention and removal during transport in sandy soil, the magnitude of retention may be less than that which would be predicted by applying standard colloid filtration theory to the results of typical short-column experiments. Thus, a fraction of the oocysts may be more mobile than anticipated and thereby pose a greater than expected risk to groundwater.  相似文献   
13.
Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications.  相似文献   
14.
The partitioning tracer test (PTT) is a characterization tool that can be used to quantify the porespace saturation (SN) and spatial distribution of dense nonaqueous phase liquids (DNAPLs) in the subsurface. Because the method essentially eliminates data interpolation errors by directly measuring a relatively large subsurface volume, it offers significant promise as a remediation metric for DNAPL‐zone remediation efforts. This article presents, in detail, the design and results of field PTTs conducted before and after a DNAPL‐zone treatment at the Naval Amphibious Base Little Creek, Virginia Beach, Virginia. The results from different tracers yield a relatively large range in SN estimates, indicating notable uncertainty and presenting significant challenges for meaningful interpretation. Several potential interpretation methods are presented, resulting in an estimated DNAPL removal range of 15 to 109 L. While this range is large, it is consistent with the DNAPL removal (~30 L) determined from analysis of effluent concentration measurements collected during the remediation efforts. At this site, the initial and final SN values are low, and the relatively inconsistent performance of the various tracers indicates that these levels are near the lower practical quantification limit for these PTTs; however, the effective lower quantification limit for these tests is unknown. Generally, an understanding of lower quantification limits is particularly important for interpretation of post‐remediation PTTs because SN values are likely to be low (due to remediation efforts) and the SN estimated from the PTT may be used to predict long‐term dissolved plume behavior and assess associated environmental risk. Partitioning tracer test quantification limits are test‐specific, as they are dependent on a variety of factors including analytical uncertainty, tracer breakthrough characteristics, and tracer data integration techniques. The results of this case study indicate that methods for estimating lower quantification limits for field PTTs require further development. © 2004 Wiley Periodicals, Inc.  相似文献   
15.
A series of miscible-displacement column experiments were conducted under saturated flow conditions to systematically investigate the influence of physical and biological complexity on bacterial activity and fate in the presence and absence of a non-sorbing growth substrate, salicylate. Bacterial elution was monitored for three different systems; System I--a sterilized, inoculated, well-sorted sand, System II--a sterilized, inoculated, heterogeneous loamy sand (Hayhook), and System III--two different unsterilized loamy sands (Hayhook and Vinton) each with their associated indigenous microbial community. Results show that System I behaved ideally with respect to both cell and substrate transport, wherein: (1) growth occurred in response to substrate addition, (2) cell elution increased in response to the substrate pulse, and (3) breakthrough curves were reproducible for both substrate and cell elution. In contrast, System II showed ideal behavior with respect to substrate transport but showed variable behavior for cell transport. Further, there was no measurable growth in response to substrate addition and no increase in cell elution during the salicylate pulse. System III exhibited non-ideal behavior for both substrate and cell transport. Of particular interest is the fact that the indigenous communities of the two soils behaved differently. Specifically, for the Hayhook soil, an increased elution response was observed for the heterotrophic population while the salicylate-degrading community was preferentially retained in the column. In contrast for the Vinton soil, the substrate pulse did not elicit an elution response from either the heterotrophic or salicylate-degrading community from the culturable, indigenous Vinton microorganisms. For Systems II and III, the observed variability appears to be associated with the biological component of the system, since sterile controls were reproducible. This type of systematic study is critical for understanding cell and substrate transport behavior in complex, heterogeneous systems, and illustrates the potential uncertainty associated with measurements in such systems.  相似文献   
16.
The long-term impact of source-zone remediation efforts was assessed for a large site contaminated by trichloroethene. The impact of the remediation efforts (soil vapor extraction and in-situ chemical oxidation) was assessed through analysis of plume-scale contaminant mass discharge, which was measured using a high-resolution data set obtained from 23 years of operation of a large pump-and-treat system. The initial contaminant mass discharge peaked at approximately 7kg/d, and then declined to approximately 2kg/d. This latter value was sustained for several years prior to the initiation of source-zone remediation efforts. The contaminant mass discharge in 2010, measured several years after completion of the two source-zone remediation actions, was approximately 0.2kg/d, which is ten times lower than the value prior to source-zone remediation. The time-continuous contaminant mass discharge data can be used to evaluate the impact of the source-zone remediation efforts on reducing the time required to operate the pump-and-treat system, and to estimate the cost savings associated with the decreased operational period. While significant reductions have been achieved, it is evident that the remediation efforts have not completely eliminated contaminant mass discharge and associated risk. Remaining contaminant mass contributing to the current mass discharge is hypothesized to comprise poorly accessible mass in the source zones, as well as aqueous (and sorbed) mass present in the extensive lower-permeability units located within and adjacent to the contaminant plume. The fate of these sources is an issue of critical import to the remediation of chlorinated-solvent contaminated sites, and development of methods to address these sources will be required to achieve successful long-term management of such sites and to ultimately transition them to closure.  相似文献   
17.
The efficacy of a simple mass-removal function for characterizing mass-flux-reduction/mass-removal behavior for organic-liquid contaminated source zones was evaluated using the data obtained from a series of flow-cell experiments. The standard function, which employs a constant exponent, could not adequately reproduce the non-singular (multi-step) behavior exhibited by the measured data. Allowing the exponent to change as a function of mass removal (as the organic-liquid distribution and relative permeability change) produced non-singular relationships similar to those exhibited by the measured data. Four methods were developed to dynamically inform the exponent through use of measurable system-indicator parameters. Key factors that mediate the magnitude of mass flux (dilution and source accessibility) were accounted for using measures of source zone cross-sectional area, ganglia-to-pool (GTP) ratio, and relative permeability. The two methods that incorporated only the ganglia-to-pool ratio produced adequate simulations of the observed behavior for early stages of mass removal, but not for later stages. The method that incorporated parameters accounting for the source zone cross-sectional area (i.e., measure of system dilution) and source accessibility (GTP ratio and relative permeability) provided the most representative simulations of the observed data.  相似文献   
18.
A series of miscible-displacement experiments was conducted to examine the impact of sorption contact time on desorption and elution of trichloroethene from a well-characterized soil. A large number of contact times were examined, spanning 1 h to 4 years (∼2 × 106 h). Effluent trichloroethene concentrations were monitored over a range of greater than six orders of magnitude, allowing characterization of potential asymptotic tailing. The results of the column experiments showed that trichloroethene exhibited extensive elution tailing for all experiments. Each increase in contact time resulted in a successive increase in the extent of tailing. In total, the number of pore volumes of water flushing required to reach the analytical detection limit increased from approximately 1000 for the 1-h contact time to almost 9000 for the 4-year contact time. These results indicate that a contact time of less than 1 h produced a sorbed phase that is relatively resistant to desorption, and that a progressive increase in resistance to desorption occurred with increased contact time. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution reaction function was used to successfully simulate the measured data. The nonlinear sorption, the apparent rapid development of desorption resistance, and the progressive increase in resistance with increasing contact time are consistent with behavior anticipated for sorbate interactions with hard-carbon components of the soil.  相似文献   
19.
Rhamnolipids produced by Pseudomonas aeruginosa have been proposed as soil washing agents for enhanced removal of metal and organic contaminants from soil. A potential limitation for the application of rhamnolipids is sorption by soil matrix components. The objective of this study is to empirically determine the contribution of representative soil constituents (clays, metal oxides, and organic matter) to sorption of the rhamnolipid form most efficient at metal complexation (monorhamnolipid). Sorption studies show that monorhamnolipid (R1) sorption is concentration dependent. At low R1 concentrations that are relevant for enhancing organic contaminant biodegradation, R1 sorption followed the order: hematite (Fe(2)O(3))>kaolinite>MnO(2) approximately illite approximately Ca-montmorillonite>gibbsite (Al(OH)(3))>humic acid-coated silica. At high R1 concentrations, relevant for use in complexation/removal of metals or organics, R1 sorption followed the order: illite>humic acid-coated silica>Ca-montmorillonite>hematite>MnO(2)>gibbsite approximately kaolinite. These results allowed prediction of R1 sorption by a series of six soils. Finally, a comparison of R1 and R2 (dirhamnolipid) shows that the R1 form sorbs more strongly alone than when in a mixture of both the R1 and R2 forms. The information presented can be used to estimate, on an individual soil basis, the extent of rhamnolipid sorption. This is important for determining: (1) whether rhamnolipid addition is a feasible remediation option and (2) the amount of rhamnolipid required to efficiently remove the contaminant.  相似文献   
20.
The magnitude of contaminant mass-flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass-flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass-flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass-flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. approximately 8%) for similar mass removals ( approximately 40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass-flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass-transfer and displacement). Conversely, a significant degree of mass-flux reduction was observed for a site wherein mass removal was inefficient (non-ideal mass-transfer and displacement). The mass-flux-reduction/mass-removal relationship for the latter site exhibited a multi-step behavior, which cannot be predicted using some of the available simple estimation functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号