首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35152篇
  免费   777篇
  国内免费   1032篇
安全科学   1179篇
废物处理   1417篇
环保管理   4390篇
综合类   8821篇
基础理论   8236篇
环境理论   6篇
污染及防治   9126篇
评价与监测   2000篇
社会与环境   1461篇
灾害及防治   325篇
  2023年   252篇
  2022年   417篇
  2021年   439篇
  2020年   366篇
  2019年   340篇
  2018年   533篇
  2017年   557篇
  2016年   788篇
  2015年   704篇
  2014年   938篇
  2013年   2750篇
  2012年   1141篇
  2011年   1451篇
  2010年   1189篇
  2009年   1296篇
  2008年   1446篇
  2007年   1485篇
  2006年   1298篇
  2005年   1116篇
  2004年   1125篇
  2003年   1045篇
  2002年   1012篇
  2001年   1271篇
  2000年   915篇
  1999年   581篇
  1998年   447篇
  1997年   399篇
  1996年   435篇
  1995年   493篇
  1994年   477篇
  1993年   422篇
  1992年   403篇
  1991年   384篇
  1990年   425篇
  1989年   387篇
  1988年   327篇
  1987年   327篇
  1986年   301篇
  1985年   304篇
  1984年   341篇
  1983年   337篇
  1982年   341篇
  1981年   347篇
  1980年   287篇
  1979年   312篇
  1978年   240篇
  1977年   218篇
  1973年   218篇
  1972年   216篇
  1967年   222篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Composting of source separated municipal biowaste has at several plants in Scandinavia been hampered by low pH. In this study the hypothesis that increased aeration would improve the process was tested in full-scale experiments at two large composting plants. The O2 concentrations were high (>15%) even at the low aeration rates, so the prevailing low pH was not due to an anaerobic process environment. In spite of this, increased aeration rates at the start of the process resulted in higher microbial activity, increased pH and a more stable compost product. At one plant the decomposition rate varied in proportion to the aeration rate, to the extent that the temperatures and O2 concentrations were similar during the early processes even though aeration rates varied between 10 and 50 m3/(h, m3 compost). However, increased aeration caused severe drying of the compost, but at one plant the addition of water was adequate to prevent drying. In conclusion, by increasing the aeration rates and adding water to compensate for drying, it was possible to shorten the time needed to produce a stable compost product and thus to increase the efficiency of the composting plants.  相似文献   
942.
Improvements of nano-SiO2 on sludge/fly ash mortar   总被引:1,自引:0,他引:1  
Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.  相似文献   
943.
A coupled fuzzy vertex and factorial-analysis approach was developed in this study for systematically characterizing effects of uncertainties in a municipal solid waste composting process. A comprehensive composting process model was also embedded into the system framework and used to address substrate decomposition and biomass growth, as well as the interactions between moisture contents, temperatures, and oxygen concentrations. The applicability of the proposed method was verified through a custom-made pilot-scale composting system. Results from fuzzy simulation indicated that the fuzzy vertex method could effectively communicate implicit knowledge into dynamic simulations and thus provide valuable information for enhancing composting process control under uncertainty. The factorial analysis was effective in quantifying the proportion to which the uncertainty of each single or interactive effect of model parameters contributes to the overall uncertainty of the system outcomes. Thus, sensitive parameters that may lead to errors or unreasonable predictions can be determined. The proposed study system could not only be used in characterizing combined effects of uncertainties for composting processes, but was also applicable to many other environmental modelling systems.  相似文献   
944.
Sorbitol and glycerol were used to plasticize sugar beet pulp-poly(lactic acid) green composites. The plasticizer was incorporated into sugar beet pulp (SBP) at 0%, 10%, 20%, 30% and 40% w/w at low temperature and shear and then compounded with poly(lactic acid) (PLA) using twin-screw extrusion and injection molding. The SBP:PLA ratio was maintained at 30:70. As expected, tensile strength decreased by 25% and the elongation increased. Acoustic emission (AE) showed correlated debonding and fracture mechanisms for up to 20% w/w plasticizer and uncorrelated debonding and fracture for 30–40% sorbitol and 30% glycerol content in SBP–PLA composites. All samples had a well dispersed SBP phase with some aggregation in the PLA matrix. However, at 40% glycerol plasticized SBP–PLA composites exhibited unique AE behavior and confocal microscopy revealed the plasticized SBP and PLA formed a co-continuous two phase system.
V. L. FinkenstadtEmail:
  相似文献   
945.
Control of GHG emission at the microbial community level   总被引:1,自引:0,他引:1  
All organic material eventually is decomposed by microorganisms, and considerable amounts of C and N end up as gaseous metabolites. The emissions of greenhouse relevant gases like carbon dioxide, methane and nitrous oxides largely depend on physico-chemical conditions like substrate quality or the redox potential of the habitat. Manipulating these conditions has a great potential for reducing greenhouse gas emissions. Such options are known from farm and waste management, as well as from wastewater treatment. In this paper examples are given how greenhouse gas production might be reduced by regulating microbial processes. Biogas production from manure, organic wastes, and landfills are given as examples how methanisation may be used to save fossil fuel. Methane oxidation, on the other hand, might alleviate the problem of methane already produced, or the conversion of aerobic wastewater treatment to anaerobic nitrogen elimination through the anaerobic ammonium oxidation process might reduce N2O release to the atmosphere. Changing the diet of ruminants, altering soil water potentials or a change of waste collection systems are other measures that affect microbial activities and that might contribute to a reduction of carbon dioxide equivalents being emitted to the atmosphere.  相似文献   
946.
Recycling plants that size, sort and wash construction and demolition waste can produce high quality aggregate. However, they also produce up to 80ton per hour of filter cake waste containing fine (<63mum) silt particles that is classified as inert waste and normally landfilled. This research investigated the potential to form geopolymers containing silt, which would allow this problematic waste to be beneficially reused as aggregate. This would significantly improve the economic viability of recycling plants that wash wastes. Silt filter cakes have been collected from a number of aggregate washing plants operating in the UK. These were found to contain similar aluminosilicate crystalline phases. Geopolymer samples were produced using silt and silt mixed with either metakaolin or pulverised fuel ash (PFA). Silt geopolymers cured at room temperature had average 7-day compressive strengths of 18.7MPa, while partial substitution of silt by metakaolin or PFA increased average compressive strengths to 30.5 and 21.9MPa, respectively. Curing specimens for 24h at 105 degrees C resulted in a compressive strength of 39.7MPa and microstructural analysis confirmed the formation of dense materials. These strengths are in excess of those required for materials to be used as aggregate, particularly in unbound applications. The implications of this research for the management of waste silt at construction and demolition waste washing plants are discussed.  相似文献   
947.
Aging and compressibility of municipal solid wastes   总被引:2,自引:0,他引:2  
The expansion of a municipal solid waste (MSW) landfill requires the ability to predict settlement behavior of the existing landfill. The practice of using a single compressibility value when performing a settlement analysis may lead to inaccurate predictions. This paper gives consideration to changes in the mechanical compressibility of MSW as a function of the fill age of MSW as well as the embedding depth of MSW. Borehole samples representative of various fill ages were obtained from five boreholes drilled to the bottom of the Qizhishan landfill in Suzhou, China. Thirty-one borehole samples were used to perform confined compression tests. Waste composition and volume-mass properties (i.e., unit weight, void ratio, and water content) were measured on all the samples. The test results showed that the compressible components of the MSW (i.e., organics, plastics, paper, wood and textiles) decreased with an increase in the fill age. The in situ void ratio of the MSW was shown to decrease with depth into the landfill. The compression index, Cc, was observed to decrease from 1.0 to 0.3 with depth into the landfill. Settlement analyses were performed on the existing landfill, demonstrating that the variation of MSW compressibility with fill age or depth should be taken into account in the settlement prediction.  相似文献   
948.
In urine-diverting toilets, urine and faeces are collected separately so that nutrient content can be recycled unmixed. Faeces should be sanitized before use in agriculture fields due to the presence of possible enteric pathogens. Composting of human faeces with food waste was evaluated as a possible method for this treatment. Temperatures were monitored in three 78-L wooden compost reactors fed with faeces-to-food waste substrates (F:FW) in wet weight ratios of 1:0, 3:1 and 1:1, which were observed for approximately 20 days. To achieve temperatures higher than 15 degrees C above ambient, insulation was required for the reactors. Use of 25-mm thick styrofoam insulation around the entire exterior of the compost reactors and turning of the compost twice a week resulted in sanitizing temperatures (>or=50 degrees C) to be maintained for 8 days in the F:FW=1:1 compost and for 4 days in the F:FW=3:1 compost. In these composts, a reduction of >3 log(10) for E. coli and >4 log(10) for Enterococcus spp. was achieved. The F:FW=1:0 compost, which did not maintain >or=50 degrees C for a sufficiently long period, was not sanitized, as the counts of E. coli and Enterococcus spp. increased between days 11 and 15. This research provides useful information on the design and operation of family-size compost units for the treatment of source-separated faeces and starchy food residues, most likely available amongst the less affluent rural/urban society in Uganda.  相似文献   
949.
To determine the most appropriate composting process in an active municipal solid waste system, an experiment was carried out using a nested design method with three aeration rates. During each aeration rate, parameters such as temperature, pH, EC, carbon-to-nitrogen ratio, NO(3)-N, nitrogen, potassium and phosphorous were measured and the efficiency of different composting processes was evaluated. The result of this study showed that the lower and medium aeration rates had a significant impact on nitrogen, carbon-to-nitrogen ratio and temperature profile, while higher aeration rates led to higher EC values. Furthermore, the thermophilic phase lasted 13, 9 and 4 weeks for the aeration rates of 0.4, 0.6 and 0.9 L min(-1)kg(-1), respectively. Accordingly, it was concluded that starting at a rate of 0.6 L min(-1)kg(-1) during first 2 months (about 9 weeks) of the process and continuing at a rate of 0.4 L min(-1)kg(-1)until the end of composting process would result in lower energy consumption.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号