The use of a quantitative population growth model to investigate the persistence of South African elephant populations is explored. The model provides quantitative assessments of population persistence and confidence intervals for estimated parameters based purely on population size estimates. The analysis supports the view that most of the larger populations in the region are secure. This view is further supported by a lack of density dependent effects in most of the recovering populations and the high population rates of increase observed. This predominantly positive prognosis is in contrast with that emerging from most of the rest of the African continent where the populations are under greater threat because of habitat restriction and direct human conflict. This preliminary assessment of elephant population persistence suggests that “viable” populations may lie between 400 and 6000 individuals. Although not inconsistent with information-greedy genetic and demographic models, the relationship between population growth versus genetic and demographic models should be further investigated. The implementation of a metapopulation management strategy towards these smaller populations is advocated. In addition, as all of the populations included in this analysis have been afforded some degree of protection since the 1920s, continued protection would be a prerequisite for their continued survival. 相似文献
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively. 相似文献
ABSTRACT: The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty. 相似文献
ABSTRACT: The vulnerability of wetlands to changes in climate depends on their position within hydrologic landscapes. Hydrologic landscapes are defined by the flow characteristics of ground water and surface water and by the interaction of atmospheric water, surface water, and ground water for any given locality or region. Six general hydrologic landscapes are defined; mountainous, plateau and high plain, broad basins of interior drainage, riverine, flat coastal, and hummocky glacial and dune. Assessment of these landscapes indicate that the vulnerability of all wetlands to climate change fall between two extremes: those dependent primarily on precipitation for their water supply are highly vulnerable, and those dependent primarily on discharge from regional ground water flow systems are the least vulnerable, because of the great buffering capacity of large ground water flow systems to climate change. 相似文献
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat. 相似文献
OBJECTIVE: In developing countries, motorcycle use has grown in popularity in the past decades. Commensurate with this growth is the increase in death and casualties among motorcyclists in these countries. One of the strategic programs to minimize this problem is to reduce motorcyclists exposure by shifting them into safer modes of transport. This study aims to explore the differences in the characteristics of bus and motorcycle users. It identifies the factors contributing to their choice of transport mode and estimates the probability that motorcyclists might change their travel mode to a safer alternative; namely, bus travel. METHODS: In this article, a survey of 535 motorcycle and bus users was conducted in seven districts of Selangor state, Malaysia. A binary logit model was developed for the two alternative modes, bus and motorcycle. RESULTS: It was found that travel time, travel cost, gender, age, and income level are significant in influencing motorcyclists' mode choice behavior. The probability of motorcycle riders shifting to public transport was also examined based on a scenario of a reduction in bus travel time and travel cost. CONCLUSIONS: Reduction of total travel time for the bus mode emerges as the most important element in a program aimed at attracting motorcyclists towards public transport and away from the motorcycle mode. 相似文献
This paper presents detailed data on the thermal response of two 500 gal ASME code propane tanks that were 25% engulfed in a hydrocarbon fire. These tests were done as part of an overall test programme to study thermal protection systems for propane-filled railway tank-cars.
The fire was generated using an array of 25 liquid propane-fuelled burners. This provided a luminous fire that engulfed 25% of the tank surface on one side. The intent of these tests was to model a severe partially engulfing fire situation.
The paper presents data on the tank wall and lading temperatures and tank internal pressure. In the first test the wind reduced the fire heating and resulted in a late failure of the tank at 46 min. This tank failed catastrophically with a powerful boiling liquid expanding vapour explosion (BLEVE). In the other test, the fire heating was very severe and steady and this tank failed very quickly in 8 min as a finite rupture with massive two-phase jet release. The reasons for these different outcomes are discussed. The different failures provide a range of realistic outcomes for the subject tank and fire condition. 相似文献