首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29241篇
  免费   302篇
  国内免费   254篇
安全科学   838篇
废物处理   1042篇
环保管理   4254篇
综合类   5399篇
基础理论   7455篇
环境理论   10篇
污染及防治   7864篇
评价与监测   1625篇
社会与环境   1125篇
灾害及防治   185篇
  2022年   172篇
  2021年   217篇
  2019年   209篇
  2018年   351篇
  2017年   346篇
  2016年   577篇
  2015年   473篇
  2014年   679篇
  2013年   2365篇
  2012年   858篇
  2011年   1143篇
  2010年   868篇
  2009年   1046篇
  2008年   1181篇
  2007年   1256篇
  2006年   1101篇
  2005年   917篇
  2004年   920篇
  2003年   914篇
  2002年   875篇
  2001年   1107篇
  2000年   799篇
  1999年   497篇
  1998年   368篇
  1997年   343篇
  1996年   413篇
  1995年   418篇
  1994年   424篇
  1993年   382篇
  1992年   356篇
  1991年   348篇
  1990年   388篇
  1989年   356篇
  1988年   334篇
  1987年   312篇
  1986年   281篇
  1985年   298篇
  1984年   299篇
  1983年   309篇
  1982年   307篇
  1981年   310篇
  1980年   269篇
  1979年   286篇
  1978年   238篇
  1977年   206篇
  1976年   206篇
  1975年   187篇
  1974年   195篇
  1973年   203篇
  1972年   204篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
741.
This study used the stable 15N isotope to quantitatively examine the effects of cutting on vegetative buffer uptake of NO3(-)-N based on the theory that regular cutting would increase N demand and sequestration by encouraging new plant growth. During the summer of 2002, 10 buffer plots were established within a flood-irrigated pasture. In 2003, 15N-labeled KNO3 was applied to the pasture area at a rate of 5 kg N ha(-1) and 99.7 atom % 15N. One-half of the buffer plots were trimmed monthly. In the buffers, the cutting effect was not significant in the first few weeks following 15N application, with both the cut and uncut buffers sequestering 15N. Over the irrigation season, however, cut buffers sequestered 2.3 times the 15N of uncut buffers, corresponding to an increase in aboveground biomass following cutting. Cutting and removing vegetation allowed the standing biomass to take advantage of soil 15N as it was released by microbial mineralization. In contrast, the uncut buffers showed very little change in 15N sequestration or biomass, suggesting senescence and a corresponding decrease in N demand. Overall, cutting significantly improved 15N attenuation from both surface and subsurface water. However, the effect was temporally related, and only became significant 21 to 42 d after 15N application. The dominant influence on runoff water quality from irrigated pasture remains irrigation rate, as reducing the rate by 75% relative to the typical rate resulted in a 50% decrease in total runoff losses and a sevenfold decrease in 15N concentration.  相似文献   
742.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   
743.
Diazinon [O,O-diethyl O-2-isopropyl-6-methyl(pyrimidine-4-yl) phosphorothioate] and imidacloprid [1-(1-[6-chloro-3-pyridinyl]methyl)-N-nitro-2-imidazolidinimine] are applied to lawns for insect control simultaneously with nitrogenous fertilizers such as urea, but their potential effect on urease activity and nitrogen availability in turfgrass management has not been evaluated. Urease activity in enzyme assays, washed cell assays, and soil slurries was examined as a function of insecticide concentration. Intact cores from field sites were used to assess the effect of insecticide application on urease activity in creeping bentgrass (Agrostis palustris Huds.) and bluegrass (Poa pratensis L.) sod. Bacterial urease from Bacillus pasteurii and plant urease from jack bean [Canavalia ensiformis (L.) DC.] were unaffected by the insecticides. Both insecticides inhibited the growth of Proteus vulgaris, a urease-producing bacterium, but only diazinon significantly reduced urease activity in washed cells; neither insecticide inhibited urease activity in sonicated cells. Neither diazinon nor imidacloprid inhibited urease activity in Woolper soil (fine, mixed, mesic Typic Argiudoll) slurries, but diazinon slightly inhibited urease activity in Maury soil (fine, mixed, semiactive, mesic Typic Paleudalf) slurries. Imidacloprid had no effect on urease activity in creeping bentgrass or bluegrass sod at up to 10 times the commercial application rate. Diazinon briefly, but significantly, reduced urease activity in bluegrass sod. Co-application of imidacloprid and urea appears to be benign with respect to urease activity in soil and sod. Diazinon, in contrast, appears to have a significant, short-term, inhibitory effect on the microbial urease-producing community, but that effect depends on soil type.  相似文献   
744.
Land application of wastewater presents potential for ground water pollution if not properly managed. In situ breakthrough tests were conducted using potato (Solanum tuberosum L.)-processing wastewater and a Br tracer to characterize P leaching in seasonally frozen sandy outwash soils. In the first test, P and Br breakthrough were measured in a 7-m deep well following wastewater [2.94 mg L(-1) total P (TP); 280 mg L(-1) Br] application at the site that had 13.1 mg water-extractable P (WEP) kg(-1)and 94.4 mg Bray-1 P kg(-1). Bromide was detected in the well after approximately 0.4 pore volumes, but there was no P break-through after 7 pore volumes. In the second breakthrough test, wastewater containing 3.6 mg L(-1) TP and 259 mg L(-1) Br was applied on 1.5-m deep lysimeters at low (0.8 mg WEP kg(-1); 12.1 mg Bray-1 P kg(-1)) and high soil test P sites (104 mg WEP kg(-1); 585 mg Bray-1 P kg(-1)). Leachate TP concentration during the test remained constant (0.04 mg L(-1)) at the low P sites but increased from approximately 3.5 to 5.6 mg L(-1) at the high P sites. These results indicate no P leaching in low P soils, but leaching in high P soils, thus suggesting that most of the P leached at the high P sites was mainly due to desorption and dissolution of weakly adsorbed P from prior P applications. This was consistent with P transport simulations using the convective-dispersive equation. We conclude that P concentration in land-applied wastewater should be regulated based on soil test-P level plus wastewater P loading.  相似文献   
745.
Repeated application may increase rates of pesticide dissipation in soil and reduce persistence. The potential for this to occur was investigated for the fungicide, tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), when used for peanut (Arachis hypogaea L.) production. Soil samples were collected from peanut plots after each of four tebuconazole applications at 2-wk intervals. Soil moisture was adjusted to field capacity as necessary and samples were incubated in the laboratory for 63 d at 30 degrees C. Untreated plot samples spiked with the compound served as controls. Results indicated accelerated dissipation in field-treated samples with the time to fifty percent dissipation (DT50) decreasing from 43 to 5 d after three tebuconazole applications. Corresponding increases in rates of accumulation and decay of degradates were also indicated. Best-fit equations (r2 = 0.84-0.98) to dissipation kinetic data combined with estimates of canopy interception rates were used to predict tebuconazole and degradates concentration in soil after each successive application. Predicted concentrations compared with values measured in surface soil samples were from twofold less to twofold greater. Use of kinetic data will likely enhance assessments of treatment efficacy and human and ecological risks from normal agronomic use of tebuconazole on peanut. However, the study indicated that varying soil conditions (in particular, soil temperature and water content) may have an equal or greater impact on field dissipation rate than development of accelerated dissipation. Results emphasize that extension of laboratory-derived kinetic data to field settings should be done with caution.  相似文献   
746.
Relationships between riparian land cover, in-stream habitat, water chemistry, and macroinvertebrates were examined in headwater streams draining an agricultural region of Illinois. Macroinvertebrates and organic matter were collected monthly for one year from three intensively monitored streams with a gradient of riparian forest cover (6, 22, and 31% of riparian area). Bioassessments and physical habitat analyses were also performed in these three streams and 12 other nearby headwater streams. The intensively monitored site with the least riparian forest cover had significantly greater percent silt substrates than the sites with medium and high forest cover, and significantly higher very fine organics in substrates than the medium and high forested sites. Macroinvertebrates were abundant in all streams, but communities reflected degraded conditions; noninsect groups, mostly oligochaetes and copepods, dominated density and oligochaetes and mollusks, mostly Sphaerium and Physella, dominated biomass. Of insects, dipterans, mostly Chironomidae, dominated density and dipterans and coleopterans were important contributors to biomass. Collector-gatherers dominated functional structure in all three intensively monitored sites, indicating that functional structure metrics may not be appropriate for assessing these systems. The intensively monitored site with lowest riparian forest cover had significantly greater macroinvertebrate density and biomass, but lowest insect density and biomass. Density and biomass of active collector-filterers (mostly Sphaerium) decreased with increasing riparian forest. Hilsenhoff scores from all 15 sites were significantly correlated with in-stream habitat scores, percent riparian forest, and orthophosphate concentrations, and multiple regression indicated that in-stream habitat was the primary factor influencing biotic integrity. Our results show that these "drainage ditches" harbor abundant macroinvertebrates that are typical of degraded conditions, but that they can reflect gradients of conditions in and around these streams.  相似文献   
747.
ABSTRACT: High springtime river flows came earlier by one to two weeks in large parts of northern New England during the 20th Century. In this study it was hypothesized that late spring/early summer recessional flows and late summer/early fall low flows could also be occurring earlier. This could result in a longer period of low flow recession and a decrease in the magnitude of low flows. To test this hypothesis, variations over time in the magnitude and timing of low flows were analyzed. To help understand the relation between low flows and climatic variables in New England, low flows were correlated with air temperatures and precipitation. Analysis of data from 23 rural, unregulated rivers across New England indicated little evidence of consistent changes in the timing or magnitude of late summer/early fall low flows during the 20th Century. The interannual variability in the timing and magnitude of the low flows in northern New England was explained much more by the interannual variability in precipitation than by the interannual variability of air temperatures. The highest correlation between the magnitude of the low flows and air temperatures was with May through November temperatures (r =?0.37, p= 0.0017), while the highest correlation with precipitation was with July through August precipitation (r = 0.67, p > 0.0001).  相似文献   
748.
The solution chemistry of forested streams primarily in western North America is explained by considering the major factors that influence this chemistry — geological weathering; atmospheric precipitation and climate; precipitation acidity; terrestrial biological processes; physical/chemical reactions in the soil; and physical, chemical, and biological processes within streams. Due to the complexity of all these processes and their varying importance for different chemicals, stream water chemistry has exhibited considerable geographic and temporal variation and is difficult to model accurately. The impacts of forest harvesting on stream water chemistry were reviewed by considering the effects of harvesting on each of the important factors controlling this chemistry, as well as other factors influencing these impacts ‐ extent of the watershed harvested, presence of buffer strips between streams and harvested areas, nature of post‐harvesting site preparation, revegetation rate following harvesting, pre‐harvesting soil fertility, and soil buffering capacity. These effects have sometimes reinforced one another but have sometimes been counterbalancing or slight so that harvesting impacts on stream water chemistry have been highly variable. Eight major knowledge gaps were identified, two of which — a scarcity of detailed stream chemical budgets and knowledge of longitudinal variation in stream chemistry — relate to undisturbed streams, while the remainder relate to forest harvesting effects.  相似文献   
749.
The development, testing, and application of a probabilistic model framework for the light attenuation coefficient for downwelling irradiance (Kd) and Secchi disc transparency (SD) that resolves the effects of several light attenuating constituents, including phytoplankton and nonliving particles (tripton), is documented. The model is consistent with optical theory, partitioning the magnitudes of the light attenuating processes of absorption and scattering according to the contributions of attenuating constituents as simple summations. The probabilistic framework accommodates variations in the character and concentrations of these constituents and ambient conditions during measurements, and recognizes a linear relationship between the magnitudes of absorption and scattering by tripton. The model is tested and applied for a 21 km reach of the Seneca River, New York, that features optical gradients caused by an intervening hypereutrophic lake and dam, and a severe infestation of the exotic zebra mussel. The model is applied to resolve the roles of phytoplankton and tripton in regulating measured longitudinal patterns of SD along the study reach of the river and increases in SD since the zebra mussel invasion, and to predict decreases in Kd since the invasion.  相似文献   
750.
Sedimentation rates and sediment provenance were examined for lacustrine sediments deposited in Fairfield Lake, western North Carolina, during the past 111 years. Stratigraphic, radionuclide, and cartographic data indicate that sedimentation rates have increased several fold during the past three decades in response to localized development. The magnitude of increased sedimentation was surprising given limited development within the basin: 0.12 to 0.68 buildings/ha in 2000 in those parts directly delivering sediment to the dated cores. Thus, the analysis illustrates the potential sensitivity of watersheds in the southern Appalachians to changes in land cover. An approach that combined geochemical fingerprinting with sediment mixing models was subsequently evaluated to determine its ability to accurately estimate the contribution of sediment from (1) major bedrock formations that underlie the watershed and (2) potential sources associated with four land cover categories. Sediment sources in both analyses proved difficult to geochemically fingerprint to greater than 90 percent accuracy using data on acid‐soluble metals and selected isotopes of lead (Pb). The relative contributions of sediment from delineated sources, estimated by the mixing models, generally corresponded with known temporal and spatial patterns of land cover. However, the models were plagued by two significant problems — the chemical alteration of sediments as they were transported through upland streams to depositional sites within the lake and the loss of elemental mass. Thus, future investigations using the fingerprinting approach in this area of intense weathering, and presumably others, will need to modify the existing methods to more accurately elucidate changes in sediment provenance related to development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号