We used aerated systems to assess the influence of the bacterioplankton community on cyanobacterial blooms in algae/post-bloom of Lake Taihu, China. Bacterioplankton community diversity was evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE) fingerprinting. Chemical analysis and nitrogen dynamic changes illustrated that NH4+-N was nitrified to NO2-N and NO3-N by bacterioplankton. Finally, NH4+-N was exhausted and NO3-N was denitrified to NO2-N, while the accumulation of NO2-N indicated that bacterioplankton with completely aerobic denitrification ability were lacking in the water samples collected from Lake Taihu. We suggested that adding completely aerobic denitrification bacteria(to denitrify NO2-N to N2)would improve the water quality. PCR-DGGE and sequencing results showed that more than 1/3 of the bacterial species were associated with the removal of nitrogen, and Acidovorax temperans was the dominant one. PCR-DGGE, variation of nitrogen, removal efciencies of chlorophyll-a and canonical correspondence analysis indicated that the bacterioplankton significantly influenced the physiological and biochemical changes of cyanobacteria. Additionally, the unweighted pair-group method with arithmetic means revealed there was no obvious harm to the microecosystem from aeration. The present study demonstrated that bacterioplankton can play crucial roles in aerated ecosystems, which could control the impact of cyanobacterial blooms in eutrophicated fresh water systems. 相似文献
Size-resolved biogenic secondary organic aerosols(BSOA) derived from isoprene and monoterpene photooxidation in Qinghai Lake, Tibetan Plateau(a continental background site) and five cities of China were measured using gas chromatography/mass spectrometry(GC/MS). Concentrations of the determined BSOA are higher in the cities than in the background and are also higher in summer than in winter. Moreover, strong positive correlations(R2= 0.44–0.90) between BSOA and sulfate were found at the six sites,suggesting that anthropogenic pollution(i.e., sulfate) could enhance SOA formation,because sulfate provides a surface favorable for acid-catalyzed formation of BSOA. Size distribution measurements showed that most of the determined SOA tracers are enriched in the fine mode( 3.3 μm) except for cis-pinic and cis-pinonic acids, both presented a comparable mass in the fine and coarse( 3.3 μm) modes, respectively. Mass ratio of oxidation products derived from isoprene to those from monoterpene in the five urban regions during summer are much less than those in Qinghai Lake region. In addition, in the five urban regions relative abundances of monoterpene oxidation products to SOA are much higher than those of isoprene. Such phenomena suggest that BSOA derived from monoterpenes are more abundant than those from isoprene in Chinese urban areas. 相似文献
Nanoplastics are widely distributed in freshwater environments, but few studies have addressed their effects on freshwater algae, especially on harmful algae. In this study, the effects of polystyrene (PS) nanoplastics on Microcystis aeruginosa (M. aeruginosa) growth, as well as microcystin (MC) production and release, were investigated over the whole growth period. The results show that PS nanoplastics caused a dose-dependent inhibitory effect on M. aeruginosa growth and a dose-dependent increase in the aggregation rate peaking at 60.16% and 46.34%, respectively, when the PS nanoplastic concentration was 100 mg/L. This caused significant growth of M. aeruginosa with a specific growth rate up to 0.41 d?1 (50 mg/L PS nanoplastics). After a brief period of rapid growth, the tested algal cells steadily grew. In addition, the increase in PS nanoplastics concentration promoted the production and release of MC. When the PS nanoplastic concentration was 100 mg/L, the content of the intracellular (intra-) and extracellular (extra-) MC increased to 199.1 and 166.5 μg/L, respectively, on day 26, which was 31.4% and 31.1% higher, respectively, than the control. Our results provide insights into the action mechanism of nanoplastics on harmful algae and the potential risks to freshwater environments.
Environmental Science and Pollution Research - Soil labile and recalcitrant carbon (C) and nitrogen (N) are strongly controlled by plant inputs and climatic conditions. However, the interrelation... 相似文献
Environmental Science and Pollution Research - In this study, Mn-doped MgAl-layered double hydroxides (LDHs) were successfully synthesized for efficient removal arsenate from aqueous solution. The... 相似文献