首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   6篇
  国内免费   1篇
安全科学   11篇
废物处理   6篇
环保管理   51篇
综合类   28篇
基础理论   58篇
污染及防治   67篇
评价与监测   21篇
社会与环境   7篇
灾害及防治   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   21篇
  2012年   12篇
  2011年   9篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   12篇
  2006年   14篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   9篇
  2001年   10篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   7篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
  1934年   1篇
排序方式: 共有250条查询结果,搜索用时 15 毫秒
161.
Mobile-source air toxic (MSAT) levels increase in confining microenvironments (MEs) with numerous emission sources of vehicle exhaust or evaporative emissions or during high-load and cold-start conditions. Reformulated fuels are expected to reduce MSAT and ozone precursor emissions. This study, required under the Clean Air Act Section 211b, evaluated high-end exposures in cities using reformulated (methyl tertiary-butyl ether [MTBE] or ethanol [EtOH]) fuels and conventional gasoline blends. The study investigates 13 high-end MEs, sampling under enhanced exposure conditions expected to result in maximal fuel and exhaust component exposures to carbon monoxide (CO), carbon dioxide (CO2), BTEX (benzene, toluene, ethylbenzene, xylenes), MTBE, 1,3-butadiene (1,3-BD), EtOH, formaldehyde (HCHO), and acetaldehyde (CH3CHO). The authors found that day-to-day ME variations in high-end benzene, 1,3-BD, HCHO, and CO concentrations are substantial, but independent of gasoline composition and season, and related to the activity and emission rates of ME sources, which differ from day to day.

Implications: Mobile-source air toxic (MSAT) levels increase in confining microenvironments (MEs) in the presence of vehicular exhaust or evaporative emissions. This study, required under the Clean Air Act Section 211b, evaluated high-end exposures in cities using oxygenated (methyl tertiary-butyl ether or ethanol) and conventional gasoline blends. Personal exposure concentrations were quantified in selected MEs representing the upper end of the frequency distribution of potential population exposures. This work presents the first systematic look at high-end/maximal exposures to multiple contaminants, in multiple microenvironments, in multiple cities, over two seasons, for multiple fuels, making it a very complete evaluation of reformulated fuel impacts on MSAT concentrations in confined microenvironments. The study found that day-to-day ME variations of high-end pollutant concentrations are substantial, but independent of gasoline composition and season, and related to the variable daily activity and emission rates of ME sources. The data collected in this study may be used in bounding exposure modeling estimates that account for time spent in similar confining MEs.  相似文献   
162.
The Maryland State Highway Administration (SHA) monitoring program monitored the impact of vehicular emissions on the concentrations of the fine particles smaller than 2.5 microns (PM2.5). PM2.5 concentrations were monitored in close proximity to a highway in order to determine whether traffic conditions on the roadway impact concentrations at this location. The monitoring program attempted to connect monitored concentrations with the roadway traffic exhaust or with the other sources of PM2.5. PM2.5 concentrations were collected near the Capital Beltway (I-495/I-95) in Largo, Maryland. The monitoring program was launched on May 13, 2009 and continued through the end of 2012. Two co-located monitors, one for continuous PM2.5 measurements and the other for speciation measurements, were used in this program. Meteorological and traffic information was also continuously collected at or near the monitoring site. Additionally, data from the two other monitoring locations, one at the Howard University-Beltsville, MD and one at McMillan Reservoir, DC, was used for comparison with the data collected at the SHA monitoring location. The samples collected by the speciation monitor were analyzed at the RTI and DRI Laboratories to determine the composition and the sources of the collected PM2.5 samples. Based on the apportionment analysis, the contribution of roadway sources is about 12 to 17 percent of PM2.5 at the near-road site.

Implications: PM2.5 monitoring at 150 m (approximately 500 feet) from a major highway in Maryland near Washington, DC, demonstrated that roadway traffic contributes to the total PM2.5 concentration near the roadway, but the contribution at such distance is small, in the order of 12–17% of the total.  相似文献   
163.
Coral reefs provide shoreline protection, biological diversity, fishery harvests, and tourism, all values that stem from the physically-complex coral infrastructure. Stony corals (scleractinians) construct and maintain the reef through deposition of calcium carbonate. Therefore, assessment of coral reefs requires at least some measurement endpoints that reflect the biological and physical condition of stony corals. Most monitoring programs portray coral quantity as live coral cover, which is the two-dimensional proportion of coral surface to sea floor viewed from above (planar view). The absence of the third dimension, however, limits our ability to characterize coral reef value, physiology, health and sustainability. A three-dimensional (3D) approach more realistically characterizes coral structure available as community habitat and, when combined with estimates of live coral tissue, quantifies the amount of living coral available for photosynthesis, growth and reproduction. A rapid coral survey procedure that coupled 3D coral quantification with more traditional survey measurements was developed and tested in the field. The survey procedure relied on only three underwater observations – species identification, colony size, and proportion of live tissue – made on each colony in the transect. These observations generated a variety of metrics, including several based on 3D colony surface area, that are relevant to reef management.  相似文献   
164.
This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and watershed research. The research was initiated as part of EPA/NPS PRIMENet (Park Research and Intensive Monitoring of Ecosystems Network), a system of UV-monitoring stations and long-term watershed research sites located in US national parks. The initial goals at Acadia NP were to address research questions about mercury, acid rain, and nitrogen saturation developed from prior research. The project design was based on natural differences in forests and soils induced by an intense wildfire in one watershed in 1947. There is no evidence of fire in the reference watershed for several hundred years. We are testing hypotheses about controls on surface water chemistry, and bioavailability of contaminants in the contrasting watersheds. The unburned 47-ha Hadlock Brook watershed is 70% spruce-fir mature conifer forest. In contrast, burned 32-ha Cadillac Brook watershed, 4 km northeast of the Hadlock watershed, is 20% regenerating mixed northern hardwoods and 60% shrub/rocky balds. Differences in atmospheric deposition are controlled primarily by forest stand composition and age. The watersheds are gauged and have water chemistry stations at 122 m (Cadillac) and 137 m (Hadlock); watershed maximum elevations are 468 and 380 m, respectively. The stream water chemistry patterns reflect, in part, the legacy of the intense fire, which, in turn, controls differences in forest vegetation and soil characteristics. These factors result in higher nitrogen and mercury flux from the unburned watershed, reflecting differences in atmospheric deposition, contrasting ecosystem pools of nitrogen and mercury, and inferred differences in internal cycling and bioavailabilty.  相似文献   
165.
Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (<C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production
ImplicationsRapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.  相似文献   
166.
When a mining company selects a site for development, the company begins a dialogue with the local community about receiving the necessary approvals for the mining permits. The dialogue focuses on how well the company can use science and technology to manage risk to the local environment, and on how much economic benefit will be gained by the local community for accepting the risk. A useful approach to better understand how the debate affects the outcome of the permitting effort is to use the method of “discourse communities and analysis”. This paper analyzes two efforts by Kennecott (Rio Tinto) and one by Exxon to develop base metal mine sites in the Upper Midwest of the USA. As the three case studies show, the local pro- and anti-mining discourse community members will not be changing their basic positions as the permitting of a new mine is debated. Accordingly, both communities are trying to convince undecided stakeholders rather than talking to each other. Both sides are using ever more sophisticated media methods to communicate their message to the undecided residents of the community. By winning the support of the majority of the undecided residents, political pressure can be used to sway the decision.  相似文献   
167.
This study investigates hydrological controls on E. coli concentration and loading in two artificially drained agricultural watersheds (58 and 23 km(2)) of the U.S. Midwest. Stream E. coli concentrations are significantly (p < 0.02) lower at base flow than high flow; however, E. coli load is significantly higher at high flow than at low flow (p < 0.001). Although E. coli concentrations are not significantly higher (p = 0.253) in summer/fall (3269 MPN/100 mL) than in the winter/spring (2411 MPN/100 mL), E. coli load is significantly higher (p < 0.05) in winter/spring (346 MPN/day) than in summer/fall season (75 MPN/day). Correlation analysis indicates that discharge and precipitation are the best indicators of E. coli concentration and 7-d antecedent precipitation (7dP), the best indicator of E. coli loading in the watersheds studied regardless of flow conditions and location. However, E. coli concentration and loading best correlate to 7dP and turbidity at base flow. A spatial dependency is also observed at base flow with E. coli concentration and load correlating better to 7dP in the headwaters and to turbidity in the lower reaches of the watersheds studied. For high flow conditions, E. coli concentration and loading are poorly correlated to most variables, except stream water temperature and 7-d antecedent discharge. These results are consistent with those reported in the literature and suggest that, at least during base flow conditions, turbidity and 7dP may be usable in artificially drained landscapes of the Midwest to identify potential hot spots of E. coli contamination.  相似文献   
168.
An ozone abatement strategy for the South Coast Air Basin (SoCAB) has been proposed by the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (ARB). The proposed emissions reduction strategy is focused on the reduction of nitrogen oxide (NOx) emissions by the year 2030. Two high PM2.5 concentration episodes with high ammonium nitrate compositions occurring during September and November 2008 were simulated with the Community Multi-scale Air Quality model (CMAQ). All simulations were made with same meteorological files provided by the SCAQMD to allow them to be more directly compared with their previous modeling studies. Although there was an overall under-prediction bias, the CMAQ simulations were within an overall normalized mean error of 50%; a range that is considered acceptable performance for PM modeling. A range of simulations of these episodes were made to evaluate sensitivity to NOx and ammonia emissions inputs for the future year 2030. It was found that the current ozone control strategy will reduce daily average PM2.5 concentrations. However, the targeted NOx reductions for ozone were not found to be optimal for reducing PM2.5 concentrations. Ammonia emission reductions reduced PM2.5 and this might be considered as part of a PM2.5 control strategy.

Implications: The SCAQMD and the ARB have proposed an ozone abatement strategy for the SoCAB that focuses on NOx emission reductions. Their strategy will affect both ozone and PM2.5. Two episodes that occurred during September and November 2008 with high PM2.5 concentrations and high ammonium nitrate composition were selected for simulation with different levels of nitrogen oxide and ammonia emissions for the future year 2030. It was found that the ozone control strategy will reduce maximum daily average PM2.5 concentrations but its effect on PM2.5 concentrations is not optimal.  相似文献   

169.
The optimal design of reserve networks and fisheries closures depends on species occurrence information and knowledge of how anthropogenic impacts interact with the species concerned. However, challenges in surveying mobile and cryptic species over adequate spatial and temporal scales can mask the importance of particular habitats, leading to uncertainty about which areas to protect to optimize conservation efforts. We investigated how telemetry-derived locations can help guide the scale and timing of fisheries closures with the aim of reducing threatened species bycatch. Forty juvenile speartooth sharks (Glyphis glyphis) were monitored over 22 months with implanted acoustic transmitters and an array of hydrophone receivers. Using the decision-support tool Marxan, we formulated a permanent fisheries closure that prioritized areas used more frequently by tagged sharks and considered areas perceived as having high value to fisheries. To explore how the size of the permanent closure compared with an alternative set of time-area closures (i.e., where different areas were closed to fishing at different times of year), we used a cluster analysis to group months that had similar arrangements of selected planning units (informed by shark movements during that month) into 2 time-area closures. Sharks were consistent in their timing and direction of migratory movements, but the number of tagged sharks made a big difference in the placement of the permanent closure; 30 individuals were needed to capture behavioral heterogeneity. The dry-season (May–January) and wet-season (February–April) time-area closures opened 20% and 25% more planning units to fishing, respectively, compared with the permanent closure with boundaries fixed in space and time. Our results show that telemetry has the potential to inform and improve spatial management of mobile species and that the temporal component of tracking data can be incorporated into prioritizations to reduce possible impacts of spatial closures on established fisheries.  相似文献   
170.
Endocrine disrupting compounds (EDCs) are contaminants that may be hormonally active at low concentrations and are emerging as a major concern for water quality. Estrogenic EDCs (e-EDCs) are a subclass of EDCs that, when organisms are exposed to them, function as estrogens. Given that there are numerous e-EDCs that can negatively affect humans and wildlife, general screening techniques like biologically based assays (BBAs) may provide major advantages by estimating the total estrogenic effects of many e-EDCs in the environment. These techniques may potentially be adapted for field portable biologically directed sampling and analyses. This article summarizes available BBAs used to measure estrogenic e-EDCs in the environmental samples and also presents results relating to fate and transport of e-EDCs. Estrogenic EDCs appear to be almost ubiquitous in the environment, despite low solubility and high affinity of organic matter. Potential transport mechanisms may include: (1) transport of more soluble precursors, (2) colloid facilitated transport, (3) enhanced solubility through elevated pH, and (4) the formation of micelles by longer-chain ethoxylates. Due to their persistent and ubiquitous nature, source control strategies for e-EDCs may reduce influent concentration to wastewater treatment plants so that the post treatment effluent will decrease concentrations to estrogenically inactive levels. Alternatively if source reduction is not possible, then more testing is needed on tertiary treatment technologies and treatment efficiencies for e-EDCs. There is still a need for research on remediation and restoration approaches for habitats disturbed by elevated e-EDC concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号