首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2079篇
  免费   54篇
  国内免费   23篇
安全科学   130篇
废物处理   94篇
环保管理   466篇
综合类   233篇
基础理论   530篇
环境理论   3篇
污染及防治   446篇
评价与监测   149篇
社会与环境   73篇
灾害及防治   32篇
  2023年   16篇
  2022年   31篇
  2021年   29篇
  2020年   28篇
  2019年   28篇
  2018年   54篇
  2017年   69篇
  2016年   75篇
  2015年   74篇
  2014年   70篇
  2013年   146篇
  2012年   99篇
  2011年   172篇
  2010年   104篇
  2009年   99篇
  2008年   123篇
  2007年   137篇
  2006年   123篇
  2005年   78篇
  2004年   74篇
  2003年   74篇
  2002年   65篇
  2001年   42篇
  2000年   32篇
  1999年   33篇
  1998年   28篇
  1997年   17篇
  1996年   25篇
  1995年   19篇
  1994年   21篇
  1993年   17篇
  1992年   17篇
  1991年   9篇
  1990年   11篇
  1989年   5篇
  1988年   10篇
  1987年   17篇
  1986年   9篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   10篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1969年   3篇
  1937年   2篇
  1936年   2篇
  1935年   3篇
  1926年   2篇
排序方式: 共有2156条查询结果,搜索用时 46 毫秒
671.
A variety of emerging chemicals of concern are released continuously to surface water through the municipal wastewater effluent discharges. The ability to rapidly determine bioaccumulation of these contaminants in exposed fish without sacrificing the animal (i.e. in vivo) would be of significant advantage to facilitate research, assessment and monitoring of their risk to the environment. In this study, an in vivo solid phase micro-extraction (SPME) approach was developed and applied to the measurement of a variety of emerging contaminants (carbamazepine, naproxen, diclofenac, gemfibrozil, bisphenol A, fluoxetine, ibuprofen and atrazine) in fish. Our results indicated in vivo SPME was a potential alternative extraction technique for quantitative determination of contaminants in lab exposures and as well after exposure to two municipal wastewater effluents (MWWE), with a major advantage over conventional techniques due to its ability to non-lethally sample tissues of living organisms.  相似文献   
672.
The Anthropocene: From Global Change to Planetary Stewardship   总被引:3,自引:0,他引:3  
Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet's capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geoengineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.  相似文献   
673.
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.  相似文献   
674.
Mak MS  Lo IM 《Chemosphere》2011,84(2):234-240
This study investigated the removal kinetics and mechanisms of Cr(VI) and As(V) by Fe(0) in the presence of fulvic acid (FA) and humic acid (HA) by means of batch experiments. The focus was on the involvements of FA and HA in redox reactions, metal complexation, and iron corrosion product aggregation in the removal of Cr(VI) and As(V) removal by Fe(0). Synthetic groundwater was used as the background electrolyte to simulate typical groundwater. The results showed faster Cr(VI) removal in the presence of HA compared to FA. Fluorescence spectroscopy revealed that no redox reaction occurred in the FA and HA. The results of the speciation modeling indicate that the free Fe(II) concentration was higher in the presence of HA, resulting in a higher removal rate of Cr(VI). However, the removal of As(V) was inhibited in the HA solution. Speciation modeling showed that the concentration of dissolved metal-natural organic matter (metal-NOM) complexes significantly affected the aggregation of the iron corrosion products which in turn affected the removal of As(V). The aggregation was found to be induced by gel-bridging of metal-NOM with the iron corrosion products. The effects of metal-NOM on the aggregation of the iron corrosion products were further confirmed by TEM studies. Larger sizes of iron corrosion products were formed in the FA solution compared to HA solution. This study can shed light on understanding the relationships between the properties of NOM (especially the content of metal-binding sites) and the removal of Cr(VI) and As(V) by Fe(0).  相似文献   
675.
Biomass crops are being promoted as environmentally favorable alternatives to fossil fuels or ethanol production from maize (Zea mays L.), particularly across the Corn Belt of the United States. However, there are few if any empirical studies on inorganic N leaching losses from perennial grasses that are harvested on an annual basis, nor has there been empirical evaluation of the hydrologic consequences of perennial cropping systems. Here we report on the results of 4 yr of field measurements of soil moisture and inorganic N leaching from a conventional maize-soybean [Glycine max (L.) Merr.] system and two unfertilized perennial grasses harvested in winter for biomass: Miscanthus x giganteus and switchgrass (Panicum virgatum cv. Cave-in-Rock). All crops were grown on fertile Mollisols in east-central Illinois. Inorganic N leaching was measured with ion exchange resin lysimeters placed 50 cm below the soil surface. Maize--soybean nitrate leaching averaged 40.4 kg N ha(-1) yr(-1), whereas switchgrass and Miscanthus had values of 1.4 and 3.0 kg N ha(-1) yr(-1), respectively. Soil moisture monitoring (to a depth of 90 cm) indicated that both perennial grasses dried the soil out earlier in the growing season compared with maize-soybean. Later in the growing season, soil moisture under switchgrass tended to be greater than maize-soybean or Miscanthus, whereas the soil under Miscanthus was consistently drier than under maize--soybean. Water budget calculations indicated that evapotranspiration from Miscanthus was about 104 mm yr(-1) greater than under maize-soybean, which could reduce annual drainage water flows by 32% in central Illinois. Drainage water is a primary source of surface water flows in the region, and the impact ofextensive Miscanthus production on surface water supplies and aquatic ecosystems deserves further investigation.  相似文献   
676.
This study utilizes remote sensing derived forest aboveground biomass (AGB) estimates and ownership information obtained from the Protected Areas Database (PAD), combining landscape analyses and GIS techniques to demonstrate how different ownerships (public, regulated private, and other private) relate to the spatial distribution of AGB in New England states of the USA. “Regulated private” lands were dominated by lands in Maine covered by a Land Use Regulatory Commission. The AGB means between all pairs of the identified ownership categories were significantly different (P < 0.05). Mean AGB observed in public lands (156 Mg/ha) was 43% higher than that in regulated private lands (109 Mg/ha), or 30% higher than that of private lands as a whole. Seventy-seven percent of the regional forests (or about 9,300 km2) with AGB >200 Mg/ha were located outside the area designated in the PAD and concentrated in western MA, southern VT, southwestern NH, and northwestern CT. While relatively unfragmented and high-AGB forests (>200 Mg/ha) accounted for about 8% of total forested land, they were unevenly proportioned among the three major ownership groups across the region: 19.6% of the public land, 0.8% of the regulated private land, and 11.0% of the other private land. Mean disturbance rates (in absolute value) between 1992 and 2001 were 16, 66, and 19 percent, respectively, on public, regulated private, and other private land. This indicates that management practices from different ownerships have a strong impact on dynamic changes of landscape structures and AGB distributions. Our results may provide insight information for policy makers on issues regarding forest carbon management, conservation biology, and biodiversity studies at regional level.  相似文献   
677.
Non-point-source (NPS) pollution remains the primary source of stream impairment in the United States. Many problems such as eutrophication, sedimentation, and hypoxia are linked with NPS pollution which reduces the water quality for aquatic and terrestrial organisms. Increasingly, NPS pollution models have been used for landscape-scale pollution assessment and conservation strategy development. Our modeling approach functions at a scale between simple landscape-level assessments and complex, data-intensive modeling by providing a rapid, landscape-scale geographic information system (GIS) model with minimal data requirements and widespread applicability. Our model relies on curve numbers, literature-derived pollution concentrations, and land status to evaluate total phosphorus (TP), total nitrogen (TN), and suspended solids (SS) at the reach scale. Model testing in the Chesapeake Bay watershed indicated that predicted distributions of water quality classes were realistic at the reach scale, but precise estimates of pollution concentrations at the local scale can have errors. Application of our model in the tributary watersheds along Lake Ontario suggested that it is useful to managers in watershed planning by rapidly providing important information about NPS pollution conditions in areas where large data gaps exist, comparisons among stream reaches across numerous watersheds are required, or regional assessments are sought.  相似文献   
678.
The effect of elevated CO2 and O3 on apparent quantum yield (?), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO2 alone did not affect ? or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration.  相似文献   
679.
17α-ethynylestradiol (EE2), a synthetic estrogen prescribed as a contraceptive, was measured in Shorthead Redhorse Suckers (ShRHSs) (Moxostoma macrolepidotum) collected near a wastewater treatment plant (WWTP) in the St. Clair River (Ontario, Canada). We detected EE2 in 50% of the fish samples caught near the WWTP (Stag Island), which averaged 1.6 ± 0.6 ng/g (wet weight) in males and 1.43 ± 0.96 ng/g in females. No EE2 was detected in the samples from the reference site (Port Lambton) which was 26 km further downstream of the Stag Island site. Only males from Stag Island had VTG induction, suggesting the Corunna WWTP effluent as a likely source of environmental estrogen. EE2 concentrations were correlated with total body lipid content (R2 = 0.512, p < 0.01, n = 10). Lipid normalized EE2 concentrations were correlated with δ15N (R2 = 0.436, p < 0.05, n = 10), suggesting higher EE2 exposures in carnivores. Our data support the hypothesis of EE2 bioaccumulation in wild fish.  相似文献   
680.

Background, aim, and scope  

Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号