首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2825篇
  免费   179篇
  国内免费   877篇
安全科学   226篇
废物处理   133篇
环保管理   299篇
综合类   1331篇
基础理论   400篇
污染及防治   1100篇
评价与监测   158篇
社会与环境   130篇
灾害及防治   104篇
  2024年   10篇
  2023年   63篇
  2022年   155篇
  2021年   137篇
  2020年   100篇
  2019年   80篇
  2018年   84篇
  2017年   144篇
  2016年   149篇
  2015年   153篇
  2014年   194篇
  2013年   296篇
  2012年   219篇
  2011年   236篇
  2010年   175篇
  2009年   165篇
  2008年   205篇
  2007年   187篇
  2006年   158篇
  2005年   118篇
  2004年   93篇
  2003年   116篇
  2002年   105篇
  2001年   115篇
  2000年   76篇
  1999年   65篇
  1998年   36篇
  1997年   47篇
  1996年   39篇
  1995年   29篇
  1994年   19篇
  1993年   11篇
  1992年   21篇
  1991年   20篇
  1990年   8篇
  1989年   8篇
  1988年   8篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   7篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1973年   1篇
  1960年   1篇
排序方式: 共有3881条查询结果,搜索用时 15 毫秒
991.
淮安市环境监测中心站于1999年-2000年对淮安市农产品中重金属以及有机氯、有机磷农药残留量进行了调查。结果表明,粮食和蔬菜作物中,六六六的4种同分异构体只有γ-六六六能检出,检出率分别为24.0%和51.7%,都未超标;DDT的4种同分异要体均未检出;有机磷农药的检出率分别为5%和25%,其中蔬菜中敌敌畏含量出现个别超标现象,倍硫磷、乐果和杀螟松在粮食和蔬菜作物中的含量都不超标。重金属中金属“五毒”在粮食和蔬菜作物中,只有Cr和Pb能检出,Cd、Hg和As都未检出,Cu、Zn和Mn能检出,但不超标。提出,应严格按照农牧渔业部和卫生部颁发的《农药安全使用规定》用药,多使用高效低残留量的“绿色农药”;农业、环保和卫生部门必须加强合作,对蔬菜生产销售的全过程进行监督监测,以确保生产无公害蔬菜。  相似文献   
992.
在序批式污泥厌氧反应器中探究了高铁酸钾对污泥破解及厌氧产酸的影响。实验结果表明高铁酸钾对污泥具有较强的破解性,当高铁酸钾的质量浓度由0 mg/L增加至16 mg/L时,溶解性COD与总COD的比值由6.2%升至35.6%。同时污泥液相中溶解性蛋白质的质量浓度由561 mg/L增加至1 365 mg/L。高铁酸钾的浓度与挥发性悬浮固体(VSS)的减量具有一定的线性关系。当高铁酸钾的质量浓度为8 mg/L时,污泥厌氧产挥发性脂肪酸最大,并且最大值为895 mg/L,其浓度是空白组2.56倍。  相似文献   
993.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   
994.
Environmental monitoring and modelling, especially in the regional context, has seen significant progress with the widely usage of satellite measurement in conjunction with local meteorological and air quality monitoring to understand the atmospheric dispersion and transport of air pollutants. This paper studies the application of these data and modelling tools to understand the environment effects of a major bushfire period in the state of New South Wales (NSW), Australia, in 2013. The bushfires have caused high pollution episodes at many sites in the greater Sydney metropolitan areas. The potential long-range transport of aerosols produced by bushfires to other region and states has been seen by regulators as a major concern. Using data and images collected from satellites, in addition to the results obtained from different simulations carried out using HYSPLIT trajectory model and a regional meteorological model called Conformal Cubic Atmospheric Model (CCAM), we were able to identify at least 2 days on which the smoke aerosols from bush fires in NSW has been transported at high altitude to the northern state of Queensland and the Coral Sea. As a result, widespread high particle concentration in South East Queensland including the Brisbane area, as measured by nearly all the air quality monitoring stations in this region, occurred on the day when the smoke aerosols intruded to lower altitude as indicated by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Lidar measurements on the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The use of meteorological or air quality modelling to connect the ground-based measurements with satellite observations as shown in this study is useful to understand the pollutant transport due to bushfires and its impact on regional air quality.  相似文献   
995.
The Paris Agreement marks the beginning of a new era in the global response to climate change, which further clarifies the long-term goal and underlines the urgency addressing climate change. For China, promoting the decoupling between economic growth and carbon emissions as soon as possible is not only the core task of achieving the medium- and long-term goals and strategies to address climate change, but also the inevitable requirement for ensuring the sustainable development of economy and society. Based on the analysis of the historical trends of the economy and social development, as well as society, energy consumption, and key end-use sectors in China, this paper studies the deep carbon emission reduction potential of carbon emission of in energy, industry, building, and transportation and other sectors with “bottom-up” modeling analysis and proposes a medium- and long-term deep decarbonization pathway based on key technologies’ mitigation potentials for China. It is found that under deep decarbonization pathway, China will successfully realize the goals set in China’s Intended Nationally Determined Contributions of achieving carbon emissions peak around 2030 and lowering carbon dioxide emissions per unit of gross domestic product (GDP) by 60–65% from the 2005 level. From 2030 onward, the development of nonfossil energy will further accelerates, and the share of nonfossil energies in primary energy will amounts to about 44% by 2050. Combined with the acceleration of low-carbon transformation in end-use sectors including industry, building, and transportation, the carbon dioxide emissions in 2050 will fall to the level before 2005, and the carbon dioxide emissions per unit of GDP will decreases by more than 90% from the 2005 level. To ensure the realization of the deep decarbonization pathway, this paper puts forward policy recommendations from four perspectives, including intensifying the total carbon dioxide emissions cap and strengthening the related institutional systems and regulations, improving the incentive policies for industrial low-carbon development, enhancing the role of the market mechanism, and advocating low-carbon life and consumption patterns.  相似文献   
996.
Evaluations of water footprint (WF) used to enhance performance of policies on water utilization will benefit from combining WF analysis with methods from sustainability analysis. For this purpose, this paper analyzes the WF of China’s five main food crops, which together account for roughly 33 % of the nation’s water consumption. We assess distributional equity at the provincial scale and use the IPAT identity and a decoupling analysis to assess the scale of both national and provincial WF consumption, the factors influencing the WF fluctuation, and the efficiency of water allocation. Results show that although it is difficult in the short term to end the unsustainable WFs of China’s five main food crops, more efficient allocation can be achieved through appropriate agricultural policy modification. In the long term, distributional equity at the provincial level must be the key factor in achieving sustainable agriculture in China.  相似文献   
997.
农田土壤镉生物有效性及暴露评估研究进展   总被引:2,自引:0,他引:2  
随着工业化和城市化进程的发展,我国在农田土壤污染领域面临较大挑战,其中镉(Cd)为最优先控制元素之一。农田土壤Cd污染风险类型为健康风险,其主要暴露途径为经土壤-植物系统,并经膳食进入人体。在当前的土壤Cd风险评估中,一般不考虑生物有效性问题,这使得风险评价中实际暴露评估的不确定性普遍偏高。所以,近年来欧洲国家有许多研究者提出将生物有效性因素放在土壤污染物风险评价框架内。基于此,本文立足于农田系统,并从土壤、植物、污染物及环境因素等4个方面详细综述了农田土壤Cd生物有效性的影响因素及其作用机理。其次,分别综述了近年来土壤Cd生物有效性预测模型和土壤Cd膳食暴露评估模型研究进展。最后,分析了我国土壤重金属风险评价中存在的不足,并对农田土壤Cd暴露评估发展态势和研究方向进行了初步预测,以期为农田土壤Cd健康风险评估及安全基准研究提供一定参考。  相似文献   
998.
Exploration of heavy metals and organic pollutants, their leaching capacity along with health and environmental risks in contaminated industrial construction and demolition waste (ICDW) within a pesticide manufacturing plant were investigated. A maximum content of 90.8 mg?kg–1 Cd was found present in the wastes, which might originate from phosphorus rocks and industrial sulfuric acid used in pesticide production processes. An average concentration of 979.8 mg?kg–1 dichlorovos and other 11 organophosphorus pesticide were also detected. Relatively high leaching rates of around 4.14‰were obtained from laboratory simulated ICDW using both glacial acetic acid-sodium hydroxide and deionized water. Pesticide pollutants had the strongest tendency to retaining on dry bricks (leaching rate 1.68‰) compared to mortar-coatings, etc. due to their different physical characteristics and octanol-water partioning coefficient. Mobility of pesticide from on-site ICDW by water was spatially correlated to waste types, process sections and human activities, with a flux of leaching rate between 5.9‰ to 27.4%. Risk-based corrective action (RBCA) model was used to simulate the risk of contaminated ICDW debris randomly scattered. Oral and dermal ingestion amount by local workers was 9.8 × 10–3 and 1.9 × 10–2 mg?(kg?d)–1, respectively. Potential leaching risk to aquatic systems exceeded the limit for nearly 75% waste. Environmental and health risk exceedance was found in most ICDW, while the risk value of the most severely contaminated brick waste was 660 times beyond critical level. Implications for waste management involving construction and deconstruction work, waste transferring and regulation supplying were also provided.
  相似文献   
999.
Environmental Science and Pollution Research - In November 2016, the total metal concentrations in nine representative locations in lead (Pb)-zinc (Zn) mining areas, located in Guangdong Province,...  相似文献   
1000.
This study used Programmable System-on-Chip to make a fuel cell controller to manage the fuel cell operating environment. When a proton exchange membrane fuel cell is reacting, its performance is closely related to the operating conditions, such as temperature, water management, etc. This article investigates purge time interval control and the related characteristics. The controller developed in this study is free from additional power requirements, using only the power provided by the fuel cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号