首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12095篇
  免费   476篇
  国内免费   4113篇
安全科学   769篇
废物处理   717篇
环保管理   933篇
综合类   6213篇
基础理论   2070篇
环境理论   1篇
污染及防治   4517篇
评价与监测   491篇
社会与环境   470篇
灾害及防治   503篇
  2024年   15篇
  2023年   200篇
  2022年   589篇
  2021年   474篇
  2020年   368篇
  2019年   350篇
  2018年   418篇
  2017年   512篇
  2016年   533篇
  2015年   601篇
  2014年   886篇
  2013年   1192篇
  2012年   1000篇
  2011年   1008篇
  2010年   782篇
  2009年   748篇
  2008年   854篇
  2007年   686篇
  2006年   668篇
  2005年   471篇
  2004年   374篇
  2003年   452篇
  2002年   421篇
  2001年   333篇
  2000年   384篇
  1999年   410篇
  1998年   353篇
  1997年   297篇
  1996年   263篇
  1995年   219篇
  1994年   172篇
  1993年   170篇
  1992年   149篇
  1991年   94篇
  1990年   53篇
  1989年   44篇
  1988年   35篇
  1987年   20篇
  1986年   19篇
  1985年   12篇
  1984年   8篇
  1983年   5篇
  1982年   10篇
  1981年   10篇
  1979年   4篇
  1977年   3篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
961.
The remediation of dioxin-contaminated soil of a specific coastal area previously employed for the manufacture of pentachlorophenol (PCP) in southern Taiwan’s Tainan City has attracted much attention of researchers there. This work addresses the possibility of providing an effective and environmentally friendly option for removing PCDD/Fs from soil in that field. Soil screening/sieving was first conducted to assess particle distribution. Fine sand was observed to be the major component of the soil, accounting for more than 60% of the total mass. A combination of ultrasonification and mechanical double-blade agitation was used to facilitate the washing of the soil using the biosurfactant anaerobic compost tea. More than 85 and 95% of total removal efficiencies were achieved for moderately and highly contaminated soils after 6 and 10 washing cycles, respectively, under ambient temperature, a soil/liquid ratio 1:2.5, 700 rpm, and over a relatively short duration. These results were achieved through the collision and penetration effects of this combined treatment as well as PCDD/F partitioning between the particles and anaerobic compost tea. This study represents the first to report the use of anaerobic compost tea solvent to wash soil highly contaminated by dioxin. It was concluded that anaerobic compost tea, rich in non-toxic bio-surfactants (e.g., alcohols, humic acids), can be used to improve bioavailability and bioactivity of the soil making bio-attenuation and full remediation more efficient.  相似文献   
962.
Red mud-modified biochar (RM-BC) has been produced to be utilized as a novel adsorbent to remove As because it can effectively combine the beneficial features of red mud (rich metal oxide composition and porous structure) and biochar (large surface area and porous structure properties). SEM-EDS and XRD analyses demonstrated that red mud had loaded successfully on the surface of biochar. With the increasing of pH in solution, arsenate (As(V)) adsorption on RM-BC decreased while arsenite (As(III)) increased. Arsenate adsorption kinetics process on RM-BC fitted the pseudo-second-order model, while that of As(III) favored the Elovich model. All sorption isotherms produced superior fits with the Langmuir model. RM-BC exhibited improved As removal capabilities, with a maximum adsorption capacity (Qmax) for As(V) of 5923 μg g?1, approximately ten times greater than that of the untreated BC (552.0 μg g?1). Furthermore, it has been indicated that the adsorption of As(V) on RM-BC may be strongly associated with iron oxides (hematite and magnetite) and aluminum oxides (gibbsite) by X-ray absorption near-edge spectroscopy (XANES), which was possibly because of surface complexation and electrostatic interactions. RM-BC may be used as a valuable adsorbent for removing As in the environment due to the waste materials being relatively abundant.  相似文献   
963.
Plastic waste is a source of organic contaminants such as hexabromocyclododecanes (HBCDs). HBCDs have been found to cause developmental and reproductive toxicity; it is important to investigate the occurrence and metabolization of HBCDs in the soil environments with plastic waste contamination. This work analyzed HBCDs and their metabolites in soil and plant samples collected from Xinle and Dingzhou—the major plastic waste recycling centers in North China. Results showed that total HBCD concentrations in soils followed the order: plastic waste treatment site (11.0–624 ng/g) > roadside (2.96–85.4 ng/g) ≥ farmland (8.69–55.5 ng/g). HBCDs were detected in all the plant samples with total concentrations ranging from 3.47 to 23.4 ng/g. γ-HBCD was the dominant congener in soils, while α-HBCD was preferentially accumulated in plants. Compositions of HBCD isomers in soils and plants were significantly different (P < 0.05) among sampling sites and among plant species. HBCDs in farmland soil and all plant samples exhibited high enantio-selectivity based on the enantiomeric fractions (EFs). Furthermore, metabolites of pentabromocyclododecenes (PBCDEs) were frequently identified in soils, and mono-OH-HBCDs were the most common ones in plants. This study for the first time provides evidences of HBCD contamination in the soil-plant system caused by plastic waste, their stereo-selectivity, and metabolization behavior, improving our understanding of the environmental behavior and fate of HBCDs.  相似文献   
964.

Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

  相似文献   
965.
As a primary factor responsible for lake eutrophication, a deeper understanding of the phosphorus (P) composition and its turnover in sediment is urgently needed. In this study, P species in surface sediments from a Chinese large eutrophic lake (Lake Taihu) were characterized by traditional fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy, and their contributions to the overlying water were also discussed. Fractionation results show that NaOH-P predominated in the algal-dominated zone, accounting for 60.1% to total P in Zhushan Bay. Whereas, refractory fractions including HCl-P and residual-P were the main P burial phases in the macrophyte-dominated zone, the center and lakeshore. Recovery rates of the total P and organic P were greatly improved by using a modified single-step extraction of NaOH-EDTA, ranging from 22.6 to 66.1% and from 15.0 to 54.0%. Ortho-P, monoester-P, and pyro-P are identified as the major P components in the NaOH-EDTA extracts by 31P NMR analysis. Trace amount of DNA-P appeared only in sediments from algal- and macrophyte-dominated zones, ascribing to its biological origin. The relative content of ortho-P is the highest in the algal-dominated zone, while the biogenic P including ester-P and pyro-P is the highest in the macrophyte-dominated zone. Moreover, ortho-P and pyro-P correlated positively with TP and chlorophyll a in the overlying water, whereas only significant relationships were found between monoester-P, biogenic P, and chlorophyll a. These discrepancies imply that inorganic P, mainly ortho-P, plays a vital role in sustaining the trophic level of water body and algal bloom, while biogenic P makes a minor contribution to phytoplankton growth. This conclusion was supported by the results of high proportion of biogenic P in algae, aquatic macrophytes, and suspended particulate from the published literature. This study has significant implication for better understanding of the biogeochemical cycling of endogenous P and its role in affecting lake eutrophication.  相似文献   
966.
Environmental Science and Pollution Research - Physiological responses of Echinodorus osiris Rataj plant under cadmium (Cd) stress (5 and 15&nbsp;mg&nbsp;L?1) were studied by...  相似文献   
967.
Environmental Science and Pollution Research - Municipal solid waste incineration (MSWI) fly ash has been classified as hazardous waste and needs treatment in an environmentally safe manner....  相似文献   
968.
Environmental Science and Pollution Research - Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production....  相似文献   
969.

This study evaluated the individual and interactive effect of phenol and thiocyanate (SCN) on partial nitritation (PN) activity using batch test and response surface methodology. The IC50 of phenol and SCN on PN sludge were 5.6 and 351 mg L−1, respectively. The PN sludge was insensitive to phenol and SCN at levels lower than 1.77 and 43.3 mg L−1, respectively. A regression model equation was developed and validated to predict the relative specific respiration rate (RSRR) of PN sludge exposed to different phenol and SCN concentrations. In the range of independent variables, the most severe inhibition was observed with a valley value (17%) for RSRR, when the phenol and SCN concentrations were 4.08 and 198 mg L−1, respectively. An isobole plot was used to judge the combined toxicity of phenol and SCN, and the joint inhibitory effect was variable depending on the composition and concentration of the toxic components. Furthermore, the toxic compounds showed independent effects, which is the most common type of combined toxicity.

  相似文献   
970.
A wide range of waste biomass/waste wood feedstocks abundantly available at mine sites provide the opportunity to produce biochars for cost-effective improvement of mine tailings and contaminated land at metal mines. In the present study, soft- and hardwood biochars derived from pine and jarrah woods at high temperature (700 °C) were characterized for their physiochemical properties including chemical components, electrical conductivity, pH, zeta potential, cation-exchange capacity (CEC), alkalinity, BET surface area and surface morphology. Evaluating and comparing these characteristics with available data from the literature have affirmed the strong dictation of precursor type on the physiochemical properties of the biochars. The pine and jarrah wood feedstocks are mainly different in their proportions of cellulose, hemicellulose and lignin, resulting in biochars with heterogeneous physiochemical properties. The hardwood jarrah biochar exhibits much higher microporosity, alkalinity and electrostatic capacity than the softwood pine. Correlation analysis and principal component analysis also show a good correlation between CEC–BET–alkalinity, and alkalinity–ash content. These comprehensive characterization and analysis results on biochars’ properties from feedstocks of hardwood (from forest land clearance at mine construction) and waste pine wood (from mining operations) will provide a good guide for tailoring biochar functionalities for remediating metal mine tailings. The relatively inert high-temperature biochars can be stored for a long term at mine closure after decades of operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号