首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9456篇
  免费   441篇
  国内免费   3142篇
安全科学   655篇
废物处理   579篇
环保管理   709篇
综合类   4905篇
基础理论   1578篇
污染及防治   3445篇
评价与监测   397篇
社会与环境   400篇
灾害及防治   371篇
  2024年   14篇
  2023年   172篇
  2022年   489篇
  2021年   407篇
  2020年   311篇
  2019年   313篇
  2018年   329篇
  2017年   410篇
  2016年   437篇
  2015年   469篇
  2014年   673篇
  2013年   933篇
  2012年   785篇
  2011年   807篇
  2010年   622篇
  2009年   559篇
  2008年   674篇
  2007年   534篇
  2006年   514篇
  2005年   366篇
  2004年   291篇
  2003年   337篇
  2002年   325篇
  2001年   252篇
  2000年   279篇
  1999年   294篇
  1998年   240篇
  1997年   231篇
  1996年   198篇
  1995年   159篇
  1994年   119篇
  1993年   119篇
  1992年   108篇
  1991年   84篇
  1990年   34篇
  1989年   36篇
  1988年   30篇
  1987年   18篇
  1986年   14篇
  1985年   10篇
  1984年   7篇
  1983年   4篇
  1982年   11篇
  1981年   6篇
  1979年   2篇
  1976年   1篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
601.
602.
603.
604.
605.
606.
Hydroponic root mats for wastewater treatment—a review   总被引:2,自引:0,他引:2  
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.  相似文献   
607.
It has become increasingly apparent that global manganese (Mn) pollution to air and water is a significant threat to human health. Despite this recognition, research is only beginning to comprehend the detrimental effects of exposure. Mn, while essential, is particularly harmful to the central nervous system, and overexposure is symptomatic of several neurological disorders. At-risk populations have been identified, but it is still unclear whether typical exposure levels have any long-term consequences. Those at an elevated risk have diminished intellectual function, learning and memory, and mental development. While the overall mechanism of toxicity is undetermined, Mn has been found to induce oxidative stress, exacerbate mitochondrial dysfunction, dysregulate autophagy, and promote apoptosis, ultimately enhancing neurodegeneration. Extrapolation of this in vitro and in vivo data to humans is difficult. There is a definite need to correlate epidemiological studies with causative effects. It is imperative that research efforts endure, so threats are appropriately identified and exposure properly regulated.  相似文献   
608.

Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N2O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N2O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m2-day). The total emission in the WWTP (including carbon dioxide, methane, and N2O) would decrease by 46 % (from 0.67 to 0.36 kg CO2-equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  相似文献   
609.
Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).  相似文献   
610.
In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively.

Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C content were calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号