全文获取类型
收费全文 | 238篇 |
免费 | 1篇 |
国内免费 | 2篇 |
专业分类
安全科学 | 11篇 |
废物处理 | 22篇 |
环保管理 | 18篇 |
综合类 | 20篇 |
基础理论 | 28篇 |
污染及防治 | 118篇 |
评价与监测 | 12篇 |
社会与环境 | 6篇 |
灾害及防治 | 6篇 |
出版年
2023年 | 3篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2019年 | 2篇 |
2018年 | 4篇 |
2017年 | 10篇 |
2016年 | 8篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 30篇 |
2012年 | 13篇 |
2011年 | 14篇 |
2010年 | 15篇 |
2009年 | 14篇 |
2008年 | 17篇 |
2007年 | 13篇 |
2006年 | 14篇 |
2005年 | 14篇 |
2004年 | 13篇 |
2003年 | 12篇 |
2002年 | 9篇 |
2001年 | 5篇 |
2000年 | 7篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有241条查询结果,搜索用时 187 毫秒
51.
The disadvantages of developed biological nutrient removal (BNR) processes (additional energy for liquid circulation and addition of external carbon substrate for denitrification in anoxic zones) were improved by reconfiguring the process into (1) an anaerobic zone followed by multiple stages of aerobic-anoxic zones (TNCU3 process) or (2) anaerobic, oxic, anoxic, oxic zones in sequence (TNCU2 process). These two pilot plants were operated at a recycling sludge ratio of 0.5 without internal recycle of nitrified supernatant. The sludge retention time was maintained at 10 d. The main objective of this study is to analyze the kinetics of different microorganisms in these two processes and A2O process by using the Activated Sludge Model No. 2d. The effective removal efficiency of carbon, total phosphorus and total nitrogen at 87-98%, 92-100% and 63-80%, respectively, were achieved in the testing runs. According to model simulations, the microbial kinetics in the TNCU3 and TNCU2 processes would be affected by different operations. When the step feeding strategy was adopted, the HRT was longer due to the less influent flowrate in the front stages and the microbes would grow in quantities by about 6% in the aerobic reactors. In the followed anoxic reactors, the microbes would decrease in quantities by about 12% due to the dilution effect. The dilution effects in TNCU3 and TNCU2 processes did not take place in A2O process because the recycling mixed liquid from the aerobic reactor to the anoxic reactor still contained particulate components. The XH, XPAO, and XAUT concentrations in the effluent of the last tank were lower when the step-feeding mode was adopted. The TNCU3 and TNCU2 processes could be operated efficiently without nitrified liquid circulation and addition of external carbon substrate for denitrification. 相似文献
52.
A series of regeneration experiments with physical activation were carried out on bleaching earth waste from the soybean refining process in a rotary reactor. The influence of activation parameters on the spent clay by varying the holding time of 1 to approximately 4 hours and temperature of 700 to approximately 900 degrees C was determined. The variations of pore properties as well as the change of chemical characteristics in the resulting solids were also studied. Results showed that the resulting samples were type IV with hysteresis loops corresponding to type H3 from nitrogen adsorption-desorption isotherms, indicating slit-shaped mesoporous characteristics. However, the regenerated clays had smaller surface areas (70 to approximately 117 m2/g) than that (245 m2/g) of fresh bleaching earth. Under the physical activation conditions investigated, the holding time of 1 hour and temperature of 700 degrees C were found to be optimal conditions for producing mesoporous clay with physical activation. The adsorption of paraquat on regenerated sample was also evaluated. The isotherm showed that the regenerated sample still had a high affinity for this herbicide. Thus, the regeneration of this agro-industrial waste is one option for utilizing the clay resource, and it may be used for water treatment applications to remove organic contaminants. 相似文献
53.
Tsai CJ Perng SB Chiou SF 《Journal of the Air & Waste Management Association (1995)》2000,50(12):2120-2128
Acidic aerosol concentrations measured by an annular denuder system (ADS) and a honeycomb denuder system (HDS) in Hsinchu, Taiwan, were compared. Aerosols were also sampled by a MOUDI (micro-orifice uniform deposit impactor) and analyzed by an ion chromatograph to determine the size distributions of different species. Using the measured aerosol size distribution, theoretical analysis showed that positive HNO3 artifact due to volatilization of NH4NO3 is generally negligible for both samplers. Comparing two different denuder samplers, the average concentration of HNO3 measured by the ADS was found to be lower than that measured by the HDS, while the difference between the two samplers for the average concentration of other species was found to be within +/- 15%. A possible cause of the difference in HNO3 concentrations is due to a greater loss of HNO3 in the cyclone used by the ADS than in the impactor used by the HDS. The study also showed incomplete absorption of the evaporated HCl and HNO3 from the particles on the Teflon filter by the first nylon filter in the filter pack of the ADS. Collection efficiency and capacity of HCl and HNO3 by the nylon filters need further investigation. 相似文献
54.
Clean procedure is one of the major emitters of perfluorinated compounds (PFCs) in semiconductor manufacturing. Nitrogen trifluoride (NF(3)) is increasingly the process gas of choice for eliminating PFC emissions. However, its toxic to human and similar global warming potential compared to most other PFCs made NF(3) warranted much more investigation. This study demonstrated a radio-frequency plasma system for decomposing NF(3). The effects of experimental parameters: input power, O(2)/NF(3) ratio, operational pressure and NF(3) feeding concentration on NF(3) decomposition fraction (eta(NF3)) and energy efficiency E(NF3) were examined in detail. The analytical results demonstrated that the NF(3) was almost completely decomposed (>99%) at input power=30W, [NF(3)](in)=1.0% and eta(NF3) increased with input power. However, adding O(2) to the system inhibited NF(3) decomposition and decreased E(NF3). Moreover, eta(NF3) and E(NF3), decreased with gradually increasing operational pressure. Notably, increasing the NF(3) feeding concentration increased molecule density, reducing eta(NF3), but increasing E(NF3). Furthermore, the products detected in the NF(3)/O(2)/Ar plasma system were NO(2), NO, N(2)O, SiF(4), N(2) and F(2). Potential reaction pathways in the oxygen-based NF(3) plasma environment were built-up and elucidated. 相似文献
55.
Sheng-Chieh Chen Chuen-Jinn Tsai Charles C.-K. Chou Gwo-Dong Roam Sen-Sung Cheng Ya-Nan Wang 《Atmospheric environment (Oxford, England : 1994)》2010,44(4):533-540
Atmospheric ultrafine particles (UPs or PM0.1) were investigated at the roadside of Syuefu road in Hsinchu city, in the Syueshan highway tunnel in Taipei and in the NTU Experimental Forest in Nantou, Taiwan. A SMPS (TSI 3936) and three MOUDIs (MSP 110) were collocated to determine the number and mass concentrations of the PM0.1 simultaneously. The filter samples were further analyzed for organic carbon (OC), element carbon (EC), water-soluble ions and trace elements. Taking into account the OC artifact of PM0.1, good chemical mass closure (ratio of the reconstructed chemical mass to the gravimetrical mass of PMs) was obtained with an unknown percentage of 10.6, 26.2 and 37.2% at the roadside, tunnel and forest, respectively. The unexplained mass was attributed to aerosol water in this study. The artifact at the roadside, tunnel and the forest PM0.1 mass was found to be as high as 51.6 ± 10.7%, 20.0 ± 5.4% and 85.6 ± 18.4%, respectively. Finally, the effective density of the roadside, tunnel and forest PM0.1 was calculated based on the results of chemical speciation and found to be 1.45, 1.29 and 1.22 g cm?3, respectively, which was in good agreement with that obtained by using the method of Spencer et al. (2007). Based on these results, it is foreseeable that the number concentration of the SMPS can be converted using the effective density determined by Spencer et al. (2007) for the real time measurement of the PM0.1 concentration. 相似文献
56.
Tsai JH Chang LT Huang YS Chiang HL 《Journal of the Air & Waste Management Association (1995)》2011,61(7):796-805
Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good. 相似文献
57.
The purpose of this study is to conduct a long-term site-specific risk assessment for zinc (Zn) susceptibility of bivalves, green mussel Perna viridis and hard clam Ruditapes philippinarum, based on published experimental data by linking the biologically-based damage assessment model with the subcellular partitioning concept. A comprehensive risk modeling framework was developed to predict susceptibility probability of two bivalve species exposed to waterborne Zn. The results indicated that P. viridis accumulates more Zn toxicity, whereas both toxic potency and the recovery rate of Zn are higher for R. philippinarum. We found that negative linear correlations exist in elimination-recovery and elimination-detoxification relationships, whereas a positive linear correlation was observed in recovery-detoxification relationships for bivalves exposed to waterborne Zn. Simulation results showed that the spatial differences of susceptibility primarily resulted from the variation of waterborne Zn concentration under field conditions. We found that R. philippinarum is more susceptible of Zn than P. viridis under the same exposure condition. Results also suggested that Zn posed no significant susceptibility risk to two bivalve species in Taiwan. We suggested that these two species can be used to biomonitor the water quality on Taiwan coastal areas. 相似文献
58.
Kinmen is located in the southwest of Mainland China. Groundwater supplies 50% of the domestic water use on the island. Residents
of Kinmen drink groundwater over the long term because surface water resources are limited. Nitrate–N pollution is found and
distributed primarily in the western part of groundwater aquifer whereas saline groundwater is distributed to the northeastern
Kinmen. This work applied the DRASTIC model to construct the vulnerability map of Kinmen groundwater. MT3D was then used to
evaluate the contamination potential of nitrate–N. The health risk associated with the ingestion of nitrate–N contaminated
groundwater is also assessed. The results from DRASTIC model showed that the upland crop and grass land have high contamination
potential, whereas the forest, reservoir and housing land have low contamination potential. The calibrated MT3D model inversely
determined the high strength sources (0.09–2.74 kg/m2/year) of nitrate contaminant located in the west to the north west area and required 2–5 years travel time to reach the monitoring
wells. Simulated results of MT3D also showed that both the continuous and instantaneous contaminant sources of nitrate–N release
may cause serious to moderate nitrate contamination in the western Kinmen and jeopardize the domestic use of groundwater.
The chronic health hazard quotient (HQ) associated with the potential non-carcinogenic risk of drinking nitrate–N contaminated groundwater showed that the assessed
95th percentile of HQ is 2.74, indicating that exposure to waterborne nitrate poses a potential non-cancer risk to the residents of the island.
Corrective measures, including protecting groundwater recharge zones and reducing the number of agricultural and non-agricultural
nitrogen sources that enters the aquifer, should be implemented especially in the western part of Kinmen to assure a sustainable
use of groundwater resources. 相似文献
59.
Tsai CW Chang CT Chiou CS Shie JL Chang YM 《Journal of the Air & Waste Management Association (1995)》2008,58(10):1266-1273
Volatile organic compounds (VOCs) are the cause of indoor air pollution and are readily emitted from furniture and cleaning agents. In Taiwan, the concentrations of indoor VOCs range roughly from 1 to 10 ppm. It is important to effectively reduce indoor VOC emissions and establish the implementation of long-term, low-cost, controlled techniques such as those found in the ultraviolet/titanium dioxide (UV/TiO2) control systems. This study evaluates the performance of a photoreactor activated by visible irradiation and packed with TiO2/quartz or TiO2/mobile catalytic material number 41 (MCM-41). The photocatalysts tested include commercial TiO2 (Degussa P-25) and synthesized TiO2 with a modified sol-gel process. The UV light had a wavelength of 365 nm and contained an 8-W, low-pressure mercury lamp. Reactants and products were analyzed quantitatively by using gas chromatography with a flame-ionization detector. It is important to understand the influence of such operational parameters, such as concentration of pollutant, temperature, and retention time of processing. The indoor concentrations of VOCs varied from 2 to 10 ppm. Additionally, the temperatures ranged from 15 to 35 degrees C and the retention time tested from 2 to 8.2 sec. The results show that quartz with TiO2 had a better photoreductive efficiency than quartz with MCM-41. The toluene degradation efficiency of 77.4% with UV/TiO2/quartz was larger than that of 54.4% with the UV/TiO2/MCM-41 system under 10-min reaction time. The degradation efficiency of the UV/TiO2 system decreased with the increasing concentrations of indoor VOCs. The toluene degradation efficiency at 2 ppm was approximately 5 times greater than that at 10 ppm. The photoreduction rate of the VOCs was also evaluated with the Langmuir-Hinshewood model and was shown to be pseudo-first-order kinetics. 相似文献
60.