首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   1篇
  国内免费   2篇
安全科学   11篇
废物处理   22篇
环保管理   18篇
综合类   20篇
基础理论   28篇
污染及防治   118篇
评价与监测   12篇
社会与环境   6篇
灾害及防治   6篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2017年   10篇
  2016年   8篇
  2015年   1篇
  2014年   4篇
  2013年   30篇
  2012年   13篇
  2011年   14篇
  2010年   15篇
  2009年   14篇
  2008年   17篇
  2007年   13篇
  2006年   14篇
  2005年   14篇
  2004年   13篇
  2003年   12篇
  2002年   9篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有241条查询结果,搜索用时 187 毫秒
51.
Microbial kinetic analysis of three different types of EBNR process   总被引:3,自引:0,他引:3  
Pai TY  Tsai YP  Chou YJ  Chang HY  Leu HG  Ouyang CF 《Chemosphere》2004,55(1):109-118
The disadvantages of developed biological nutrient removal (BNR) processes (additional energy for liquid circulation and addition of external carbon substrate for denitrification in anoxic zones) were improved by reconfiguring the process into (1) an anaerobic zone followed by multiple stages of aerobic-anoxic zones (TNCU3 process) or (2) anaerobic, oxic, anoxic, oxic zones in sequence (TNCU2 process). These two pilot plants were operated at a recycling sludge ratio of 0.5 without internal recycle of nitrified supernatant. The sludge retention time was maintained at 10 d. The main objective of this study is to analyze the kinetics of different microorganisms in these two processes and A2O process by using the Activated Sludge Model No. 2d. The effective removal efficiency of carbon, total phosphorus and total nitrogen at 87-98%, 92-100% and 63-80%, respectively, were achieved in the testing runs. According to model simulations, the microbial kinetics in the TNCU3 and TNCU2 processes would be affected by different operations. When the step feeding strategy was adopted, the HRT was longer due to the less influent flowrate in the front stages and the microbes would grow in quantities by about 6% in the aerobic reactors. In the followed anoxic reactors, the microbes would decrease in quantities by about 12% due to the dilution effect. The dilution effects in TNCU3 and TNCU2 processes did not take place in A2O process because the recycling mixed liquid from the aerobic reactor to the anoxic reactor still contained particulate components. The XH, XPAO, and XAUT concentrations in the effluent of the last tank were lower when the step-feeding mode was adopted. The TNCU3 and TNCU2 processes could be operated efficiently without nitrified liquid circulation and addition of external carbon substrate for denitrification.  相似文献   
52.
A series of regeneration experiments with physical activation were carried out on bleaching earth waste from the soybean refining process in a rotary reactor. The influence of activation parameters on the spent clay by varying the holding time of 1 to approximately 4 hours and temperature of 700 to approximately 900 degrees C was determined. The variations of pore properties as well as the change of chemical characteristics in the resulting solids were also studied. Results showed that the resulting samples were type IV with hysteresis loops corresponding to type H3 from nitrogen adsorption-desorption isotherms, indicating slit-shaped mesoporous characteristics. However, the regenerated clays had smaller surface areas (70 to approximately 117 m2/g) than that (245 m2/g) of fresh bleaching earth. Under the physical activation conditions investigated, the holding time of 1 hour and temperature of 700 degrees C were found to be optimal conditions for producing mesoporous clay with physical activation. The adsorption of paraquat on regenerated sample was also evaluated. The isotherm showed that the regenerated sample still had a high affinity for this herbicide. Thus, the regeneration of this agro-industrial waste is one option for utilizing the clay resource, and it may be used for water treatment applications to remove organic contaminants.  相似文献   
53.
Acidic aerosol concentrations measured by an annular denuder system (ADS) and a honeycomb denuder system (HDS) in Hsinchu, Taiwan, were compared. Aerosols were also sampled by a MOUDI (micro-orifice uniform deposit impactor) and analyzed by an ion chromatograph to determine the size distributions of different species. Using the measured aerosol size distribution, theoretical analysis showed that positive HNO3 artifact due to volatilization of NH4NO3 is generally negligible for both samplers. Comparing two different denuder samplers, the average concentration of HNO3 measured by the ADS was found to be lower than that measured by the HDS, while the difference between the two samplers for the average concentration of other species was found to be within +/- 15%. A possible cause of the difference in HNO3 concentrations is due to a greater loss of HNO3 in the cyclone used by the ADS than in the impactor used by the HDS. The study also showed incomplete absorption of the evaporated HCl and HNO3 from the particles on the Teflon filter by the first nylon filter in the filter pack of the ADS. Collection efficiency and capacity of HCl and HNO3 by the nylon filters need further investigation.  相似文献   
54.
Wang YF  Wang LC  Shih M  Tsai CH 《Chemosphere》2004,57(9):1157-1163
Clean procedure is one of the major emitters of perfluorinated compounds (PFCs) in semiconductor manufacturing. Nitrogen trifluoride (NF(3)) is increasingly the process gas of choice for eliminating PFC emissions. However, its toxic to human and similar global warming potential compared to most other PFCs made NF(3) warranted much more investigation. This study demonstrated a radio-frequency plasma system for decomposing NF(3). The effects of experimental parameters: input power, O(2)/NF(3) ratio, operational pressure and NF(3) feeding concentration on NF(3) decomposition fraction (eta(NF3)) and energy efficiency E(NF3) were examined in detail. The analytical results demonstrated that the NF(3) was almost completely decomposed (>99%) at input power=30W, [NF(3)](in)=1.0% and eta(NF3) increased with input power. However, adding O(2) to the system inhibited NF(3) decomposition and decreased E(NF3). Moreover, eta(NF3) and E(NF3), decreased with gradually increasing operational pressure. Notably, increasing the NF(3) feeding concentration increased molecule density, reducing eta(NF3), but increasing E(NF3). Furthermore, the products detected in the NF(3)/O(2)/Ar plasma system were NO(2), NO, N(2)O, SiF(4), N(2) and F(2). Potential reaction pathways in the oxygen-based NF(3) plasma environment were built-up and elucidated.  相似文献   
55.
Atmospheric ultrafine particles (UPs or PM0.1) were investigated at the roadside of Syuefu road in Hsinchu city, in the Syueshan highway tunnel in Taipei and in the NTU Experimental Forest in Nantou, Taiwan. A SMPS (TSI 3936) and three MOUDIs (MSP 110) were collocated to determine the number and mass concentrations of the PM0.1 simultaneously. The filter samples were further analyzed for organic carbon (OC), element carbon (EC), water-soluble ions and trace elements. Taking into account the OC artifact of PM0.1, good chemical mass closure (ratio of the reconstructed chemical mass to the gravimetrical mass of PMs) was obtained with an unknown percentage of 10.6, 26.2 and 37.2% at the roadside, tunnel and forest, respectively. The unexplained mass was attributed to aerosol water in this study. The artifact at the roadside, tunnel and the forest PM0.1 mass was found to be as high as 51.6 ± 10.7%, 20.0 ± 5.4% and 85.6 ± 18.4%, respectively. Finally, the effective density of the roadside, tunnel and forest PM0.1 was calculated based on the results of chemical speciation and found to be 1.45, 1.29 and 1.22 g cm?3, respectively, which was in good agreement with that obtained by using the method of Spencer et al. (2007). Based on these results, it is foreseeable that the number concentration of the SMPS can be converted using the effective density determined by Spencer et al. (2007) for the real time measurement of the PM0.1 concentration.  相似文献   
56.
Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good.  相似文献   
57.
Chen BC  Chen WY  Ju YR  Tsai JW  Jou LJ  Singh S  Liao CM 《Chemosphere》2011,84(5):707-715
The purpose of this study is to conduct a long-term site-specific risk assessment for zinc (Zn) susceptibility of bivalves, green mussel Perna viridis and hard clam Ruditapes philippinarum, based on published experimental data by linking the biologically-based damage assessment model with the subcellular partitioning concept. A comprehensive risk modeling framework was developed to predict susceptibility probability of two bivalve species exposed to waterborne Zn. The results indicated that P. viridis accumulates more Zn toxicity, whereas both toxic potency and the recovery rate of Zn are higher for R. philippinarum. We found that negative linear correlations exist in elimination-recovery and elimination-detoxification relationships, whereas a positive linear correlation was observed in recovery-detoxification relationships for bivalves exposed to waterborne Zn. Simulation results showed that the spatial differences of susceptibility primarily resulted from the variation of waterborne Zn concentration under field conditions. We found that R. philippinarum is more susceptible of Zn than P. viridis under the same exposure condition. Results also suggested that Zn posed no significant susceptibility risk to two bivalve species in Taiwan. We suggested that these two species can be used to biomonitor the water quality on Taiwan coastal areas.  相似文献   
58.
Kinmen is located in the southwest of Mainland China. Groundwater supplies 50% of the domestic water use on the island. Residents of Kinmen drink groundwater over the long term because surface water resources are limited. Nitrate–N pollution is found and distributed primarily in the western part of groundwater aquifer whereas saline groundwater is distributed to the northeastern Kinmen. This work applied the DRASTIC model to construct the vulnerability map of Kinmen groundwater. MT3D was then used to evaluate the contamination potential of nitrate–N. The health risk associated with the ingestion of nitrate–N contaminated groundwater is also assessed. The results from DRASTIC model showed that the upland crop and grass land have high contamination potential, whereas the forest, reservoir and housing land have low contamination potential. The calibrated MT3D model inversely determined the high strength sources (0.09–2.74 kg/m2/year) of nitrate contaminant located in the west to the north west area and required 2–5 years travel time to reach the monitoring wells. Simulated results of MT3D also showed that both the continuous and instantaneous contaminant sources of nitrate–N release may cause serious to moderate nitrate contamination in the western Kinmen and jeopardize the domestic use of groundwater. The chronic health hazard quotient (HQ) associated with the potential non-carcinogenic risk of drinking nitrate–N contaminated groundwater showed that the assessed 95th percentile of HQ is 2.74, indicating that exposure to waterborne nitrate poses a potential non-cancer risk to the residents of the island. Corrective measures, including protecting groundwater recharge zones and reducing the number of agricultural and non-agricultural nitrogen sources that enters the aquifer, should be implemented especially in the western part of Kinmen to assure a sustainable use of groundwater resources.  相似文献   
59.
Volatile organic compounds (VOCs) are the cause of indoor air pollution and are readily emitted from furniture and cleaning agents. In Taiwan, the concentrations of indoor VOCs range roughly from 1 to 10 ppm. It is important to effectively reduce indoor VOC emissions and establish the implementation of long-term, low-cost, controlled techniques such as those found in the ultraviolet/titanium dioxide (UV/TiO2) control systems. This study evaluates the performance of a photoreactor activated by visible irradiation and packed with TiO2/quartz or TiO2/mobile catalytic material number 41 (MCM-41). The photocatalysts tested include commercial TiO2 (Degussa P-25) and synthesized TiO2 with a modified sol-gel process. The UV light had a wavelength of 365 nm and contained an 8-W, low-pressure mercury lamp. Reactants and products were analyzed quantitatively by using gas chromatography with a flame-ionization detector. It is important to understand the influence of such operational parameters, such as concentration of pollutant, temperature, and retention time of processing. The indoor concentrations of VOCs varied from 2 to 10 ppm. Additionally, the temperatures ranged from 15 to 35 degrees C and the retention time tested from 2 to 8.2 sec. The results show that quartz with TiO2 had a better photoreductive efficiency than quartz with MCM-41. The toluene degradation efficiency of 77.4% with UV/TiO2/quartz was larger than that of 54.4% with the UV/TiO2/MCM-41 system under 10-min reaction time. The degradation efficiency of the UV/TiO2 system decreased with the increasing concentrations of indoor VOCs. The toluene degradation efficiency at 2 ppm was approximately 5 times greater than that at 10 ppm. The photoreduction rate of the VOCs was also evaluated with the Langmuir-Hinshewood model and was shown to be pseudo-first-order kinetics.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号