首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   3篇
  国内免费   9篇
安全科学   6篇
废物处理   20篇
环保管理   20篇
综合类   32篇
基础理论   34篇
污染及防治   84篇
评价与监测   14篇
社会与环境   5篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   8篇
  2014年   5篇
  2013年   19篇
  2012年   4篇
  2011年   20篇
  2010年   19篇
  2009年   20篇
  2008年   13篇
  2007年   15篇
  2006年   10篇
  2005年   9篇
  2004年   12篇
  2003年   4篇
  2002年   8篇
  2001年   7篇
  2000年   1篇
  1999年   2篇
  1991年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有215条查询结果,搜索用时 31 毫秒
71.
Makky EA  Park GS  Choi IW  Cho SI  Kim H 《Chemosphere》2011,83(9):1228-1233
The protozoan parasites such as Cryptosporidiumparvum and Giardialamblia have been recognized as a frequent cause of recent waterborne disease outbreaks because of their strong resistance against chlorine disinfection. In this study, ozone and Fe(VI) (i.e., FeO(4)(2-)) were compared in terms of inactivation efficiency for Bacillus subtilis spores which are commonly utilized as an indicator of protozoan pathogens. Both oxidants highly depended on water pH and temperature in the spore inactivation. Since redox potential of Fe(VI) is almost the same as that of ozone, spore inactivation efficiency of Fe(VI) was expected to be similar with that of ozone. However, it was found that ozone was definitely superior over Fe(VI): at pH 7 and 20°C, ozone with the product of concentration×contact time (CˉT) of 10mgL(-1)min inactivate the spores more than 99.9% within 10min, while Fe(VI) with CˉT of 30mgL(-1) min could inactivate 90% spores. The large difference between ozone and Fe(VI) in spore inactivation was attributed mainly to Fe(III) produced from Fe(VI) decomposition at the spore coat layer which might coagulate spores and make it difficult for free Fe(VI) to attack live spores.  相似文献   
72.
Yu S  Lee B  Lee M  Cho IH  Chang SW 《Chemosphere》2008,71(11):2106-2112
There has been recent growing interest in the presence of antibiotics in different environmental sectors. One considerable concern is the potential development of antibiotic-resistant bacteria in the environment, even at low concentrations. Cefaclor, one of the beta-lactam antibiotics, is widely used as an antibiotic. Kinetic studies were conducted to evaluate the decomposition and mineralization of cefaclor using gamma radiation. Cefaclor, 30 mg/l, was completely degraded with 1,000 Gy of gamma radiation. At a concentration of 30 mg/l, the removal efficiency, represented by the G-value, decreased with increasing accumulated radiation dose. Batch kinetic experiments with initial aqueous concentrations of 8.9, 13.3, 20.0 and 30.0mg/l showed the decomposition of cefaclor using gamma radiation followed a pseudo first-order reaction, and the dose constant increased with lower initial concentrations. At a given radiation dose, the G-values increased with higher initial cefaclor concentrations. The experimental results using methanol and thiourea as radical scavengers indicated that ()OH radicals were more closely associated with the radiolytic decomposition of cefaclor than other radicals, such as e(aq)(-) or ()H. The radical scavenger effects were tested under O(2) and N(2)O saturations for the enhancement of the TOC percentage removal efficiencies in the radiolytic decomposition of cefaclor. Under O(2) saturation, 90% TOC removal was observed with 100,000 Gy. Oxygen is well known to play a considerable role in the degradation of organic substances with effective chain reaction pathways. According to the effective radical reactions, the enhanced TOC percentage removal efficiencies might be based on the fast conversion reactions of e(aq)(-) and ()H with O(2) into oxidizing radicals, such as O(2)(-) and HO(2)(), respectively. 100% TOC removal was obtained with N(2)O gas at 20,000 Gy, as reducing radicals, such as e(aq)(-) and ()H, are scavenged by N(2)O and converted into ()OH radicals, which have strong oxidative properties. The results of this study showed that gamma irradiation was very effective for the removal of cefaclor in aqueous solution. The use of O(2) or N(2)O, with radiation, shows promise as effective radical scavengers for enhancing the TOC or COD removal efficiencies in pharmaceutical wastewaters containing antibiotics. However, the biological toxicity and interactions between various chemicals during the radiolytic treatment, as well as treatments under conditions more representative of real wastewater will require further studies.  相似文献   
73.
Lee EH  Cho KS 《Chemosphere》2008,71(9):1738-1744
Cyclohexane is a recalcitrant compound that is more difficult to degrade than even n-alkanes or monoaromatic hydrocarbons. In this study, a cyclohexane-degrading consortium was obtained from oil-contaminated soil by an enrichment culture method. Based on a 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis method, this consortium was identified as comprising Alpha-proteobacteria, Actinobacteria, and Gamma-proteobacteria. One of these organisms, Rhodococcus sp. EC1, was isolated and shown to have excellent cyclohexane-degrading ability. The maximum specific cyclohexane degradation rate (Vmax) for EC1 was 246 micromol g-DCW(-1) (dry cell weight)h(-1). The optimum conditions of cyclohexane degradation were 25-35 degrees C and pH 6-8. In addition to its cyclohexane degradation abilities, EC1 was also able to strongly degrade hexane, with a maximum specific hexane degradation rate of 361 micromol g-DCW(-1)h(-1). Experiments using 14C-hexane revealed that EC1 mineralized 40% of hexane into CO2 and converted 53% into biomass. Moreover, EC1 could use other hydrocarbons, including methanol, ethanol, acetone, methyl tert-butyl ether, pyrene, diesel, lubricant oil, benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene. These findings collectively suggest that EC1 may be a useful biological resource for removal of cyclohexane, hexane, and other recalcitrant hydrocarbons.  相似文献   
74.
Ko KB  Byun Y  Cho M  Namkung W  Shin DN  Koh DJ  Kim KT 《Chemosphere》2008,71(9):1674-1682
The influence of HCl on the oxidation of gaseous elemental mercury (Hg0) has been investigated using a dielectric barrier discharge (DBD) plasma process, where the temperature of the plasma reactor and the composition of gas mixtures of HCl, H2O, NO, and O2 in N2 balance have been varied. We observe that Cl atoms and Cl2 molecules, created by the DBD process, play important roles in the oxidation of Hg0 to HgCl2. The addition of H2O to the gas mixture of HCl in N2 accelerates the oxidation of Hg0, although no appreciable effect of H2O alone on the oxidation of Hg0 has been observed. The increase of the reaction temperature in the presence of HCl results in the reduction of Hg0 oxidation efficiency probably due to the deterioration of the heterogeneous chemical reaction of Hg0 with chlorinated species on the reactor wall. The presence of NO shows an inhibitory effect on the oxidation of Hg0 under DBD of 16% O2 in N2, indicating that NO acts as an O and O3 scavenger. At the composition of Hg0 (280 microg m(-3)), HCl (25 ppm), NO (204 ppm), O2 (16%) and N2 (balance) and temperature 90 degrees C, we obtain the nearly complete oxidation of Hg0 at a specific energy density of 8 J l(-1). These results lead us to suggest that the DBD process can be viable for the treatment of mercury released from coal-fired power plants.  相似文献   
75.
Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes (J; ML(-2)T(-1)) were integrated across the well transect to estimate contaminant mass discharge (M(D); MT(-1)) from the source zone. Estimated M(D) before source treatment, based on both PFM and IPT methods, were approximately 76 g/day for TCE at the Hill AFB site; and approximately 640 g/day for TCE, and approximately 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to approximately 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to approximately 3 g/day for TCE and approximately 3 g/day for DCE approximately 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (>90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.  相似文献   
76.
A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   
77.
Jeong J  Kim JY  Cho M  Choi W  Yoon J 《Chemosphere》2007,67(4):652-659
Recently, the electrochemical disinfection has gained a great interest as one of the alternatives to conventional chlorination due to its high effectiveness and environmental compatibility. Despite the extensive reports on electro-chlorination disinfection, few researches were reported on the systems without generating chlorine. This study mainly focused on the potential disinfecting ability of electro-generated oxidants other than chlorine with using an inert medium (chloride-free phosphate buffer solution), which was intended to exclude the formation of chlorine during the electrolysis, as the Escherichia coli as an indicator bacterium was disinfected by applying the current to a platinum anode. The electrochemical inactivation of E. coli without chlorine production was demonstrated to occur in two distinct stages. The first stage inactivation takes place rapidly at the beginning of electrolysis, which appears to be achieved by the electrosorption of negatively charged E. coli cells to the anode surface, followed by a direct electron transfer reaction. As the electrolysis continues further, the inactivation becomes slower but steady, in contrast to the first stage of inactivation. This was attributed to the action of reactive oxidants generated from water discharge, such as hydroxyl radical. Overall, this study suggests that the electrochemical disinfection could be successfully performed even without producing chlorine, recommending the potential application for disinfecting water that does not allow including any chloride ions (such as the production of ultra-pure sterilized water for semiconductor washing).  相似文献   
78.
ABSTRACT: Assessment and control of nutrient losses from paddy fields is important to protect water quality of lakes and streams in Korea. A four‐year field study was carried out to investigate water management practices and losses of nitrogen (N) and phosphorus (P) in rice paddy irrigation fields in southern Korea. The amount and water quality of rainfall, irrigation, surface drainage, and infiltration were measured and analyzed to estimate inputs and losses of N and P. The observed irrigation amount surpassed consumptive use, and approximately 52 to 69 percent of inflow (precipitation plus irrigation) was lost to surface drainage. Field data showed that significant amounts of irrigation water and rainfall were not effectively used for rice paddy culture. Water quality data indicated that drainage from paddy fields could degrade the recipient water environment. The nutrient balance indicated that significant amounts of nutrients (29.5 percent of total N and 8.6 percent of total P compared to input) were lost through surface drainage. Furthermore, up to half the nutrient losses occurred during nonstorm periods. The study results indicate that inadequate water management influences N and P losses during both storm and nonstorm periods. Proper water management is required to reduce nutrient losses through surface drainage from paddy fields; this includes such measures as minimum irrigation, effective use of rainfall, adoption of proper drainage outlet structures, and minimized forced surface drainage.  相似文献   
79.
In this paper, we present the first measurement of radon concentrations in drinking groundwater from private and public deep-bored wells located in the south-eastern area of Korea. The measurements were carried out on 439 samples by using a liquid scintillation method. The results show that the radon concentrations of the samples range from 0 to about 300 Bq l(-1). We find that Sasang ward shows the highest median value of radon concentration among 13 different wards, while Jung ward has the lowest. We find that the radon concentrations are highly dependent on the type of geological rock aquifers.  相似文献   
80.
Both natural organic matter (NOM) and surfactants are known to enhance the apparent aqueous solubility of hydrophobic organic contaminants (HOCs) in aqueous systems. In this study, the combined effect of NOM and surfactants on enhancing the solubility of HOCs was investigated, since both may occur and affect the fate and transport of HOCs in natural aqueous environments. Experimental results indicated that the apparent solubility of naphthalene, phenanthrene, and pyrene in NOM and anionic surfactant solution was lower than their solubility in NOM solution alone. However, the apparent solubility of an HOC in NOM and nonionic surfactant solution is almost the same as the sum of the HOC's solubility in NOM solution plus its solubility in nonionic surfactant solution. The observation that apparent aqueous solubility of HOCs in NOM and anionic surfactant solution is decreased is probably due to the fact that the cations that are released when the anionic surfactant dissociates may form ion pairs with acidic or phenolic groups associated with the NOM. This serves to increase the size of hydration of these groups, thereby decreasing the effective size of the nonpolar moieties associated with the NOM, and thus decreasing hydrophobic partitioning of the HOCs into the NOM. The results presented here will help us to understand the effect of NOM and surfactants on the fate and transport of HOCs in aquatic systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号