首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1233篇
  免费   11篇
  国内免费   19篇
安全科学   39篇
废物处理   64篇
环保管理   147篇
综合类   224篇
基础理论   252篇
环境理论   3篇
污染及防治   398篇
评价与监测   61篇
社会与环境   73篇
灾害及防治   2篇
  2023年   3篇
  2022年   19篇
  2021年   26篇
  2020年   10篇
  2019年   12篇
  2018年   35篇
  2017年   43篇
  2016年   48篇
  2015年   38篇
  2014年   38篇
  2013年   128篇
  2012年   62篇
  2011年   89篇
  2010年   73篇
  2009年   60篇
  2008年   81篇
  2007年   64篇
  2006年   64篇
  2005年   41篇
  2004年   34篇
  2003年   37篇
  2002年   31篇
  2001年   13篇
  2000年   7篇
  1999年   7篇
  1998年   11篇
  1997年   13篇
  1996年   5篇
  1995年   15篇
  1994年   5篇
  1993年   7篇
  1992年   4篇
  1991年   8篇
  1990年   6篇
  1988年   3篇
  1985年   4篇
  1982年   4篇
  1981年   8篇
  1980年   5篇
  1978年   4篇
  1965年   7篇
  1964年   5篇
  1963年   5篇
  1962年   13篇
  1961年   13篇
  1958年   5篇
  1931年   2篇
  1924年   3篇
  1916年   3篇
  1913年   2篇
排序方式: 共有1263条查询结果,搜索用时 281 毫秒
61.

Waste-activated sludge (WAS) may be considered a resource generated by wastewater treatment plants and used for biogas-generation but it requires pre-treatment (PT) for enhanced biogas-yields and reduced WAS disposal costs. To date, a number of studies on the optimization of such PT focused on improved biogas yields but neglected inferred energy and resource consumption. Here, we aimed to identify the most promising thermo-chemical PT-strategy in terms of net energy output and cost-efficiency by optimizing PT temperature and the amount and sort of the alkaline reagent used. We compared methane-potentials and disposal costs of untreated and treated WAS and conducted an annual cost-benefit calculation. We defined 70 °C and 0.04 M NaOH as ideal PT-conditions being both, low-energy demanding and efficient. Applying these conditions, enhanced biogas-yields and improved dewaterability led to reduced electricity and disposal costs of 22 and 27%, respectively, resulting in savings of approx. 28% of the yearly WAS-related expenditures of a wastewater treatment plant. Despite multiple benefits in running costs, the implementation of WAS-PT was not recommendable in the presented case study due to high investment costs.

  相似文献   
62.
This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.  相似文献   
63.
A multi-disciplinary approach was used to evaluate the health of yellow perch (Perca flavescens) in the St. Lawrence River (Quebec, Canada), which is experiencing a severe population decline in the downstream portion of the river. Physiological parameters, liver alterations, trace metal concentrations, parasite prevalence and abundance, stable isotope composition, and the presence/absence of the viral hemorragic septicemia virus (VHSV) were evaluated in perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island, and Lake St. Pierre (north and south). Trace metal concentrations in surface water were higher in Lake St. Louis and downstream of a major urban wastewater treatment plant discharge, indicating that this effluent was a significant source of Cu, As, Ag, Zn, and Cd. Levels of Pb in surface water exceeded thresholds for the protection of aquatic life in Lake St. Louis and were negatively correlated with body condition index in this lake. In Lake St. Pierre, Cu, Ag, and Cd bioaccumulated significantly in perch liver and lower body condition index and greater liver damage were observed compared to upstream sites. Parasite analyses indicated a higher abundance of metacercariae of the trematodes Apophallus brevis and Diplostomum spp. in Lake St. Louis, and VHSV was not detected in the liver of yellow perch for all studied sites. Overall, results suggested that the global health of yellow perch from Lake St. Pierre is lower compared to upstream studied sites, which could contribute to the documented population collapse at this site.  相似文献   
64.
Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3?tonne?1) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca2+, SO4 2?, Na+ and Cl? in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD.  相似文献   
65.
66.
If organic matter is burnt, the combustion of wood produces the highest amounts of polycyclic aromatic hydrocarbons (PAHs) compared with other fossil energy sources such as oil, coal, or gas. Emissions from wood combustion are increasingly of special interest due to the rising use of wood as a renewable energy source in residential heating in Europe. To the authors' knowledge, reproducible wood-specific PAH patterns in soot were identified for the first time by use of a sampling interval of only 5 min in this study. The short sampling interval was enabled by the very sensitive analytical method of gas chromatography–atmospheric pressure laser ionization–mass spectrometry (GC-APLI-MS) applied. The analysis of 40 PAH of soot from wood logs of spruce, pine, larch (softwood) and beech, birch, oak (hardwood), and wood pellets, as well as wood briquettes, showed 13.46–250.62 mg/kg for ∑40 PAH and 10.75–177.94 mg/kg for the U.S. Environmental Protection Agency PAH standard (without acenaphthylene and anthracene). Highest concentrations occurred in the samples from birch with bark, beech, and wood briquettes. Indeno[1,2,3-cd]pyrene, naphthalene, and alkylated naphthalenes were also detected. Significant concentrations of the very toxic dibenzopyrenes (up to 11.30 mg/kg) are reported. Softwood soot contained highest amounts of 2–4-ring PAH, followed by hardwood which is in accordance with the presence of highest amounts of abietic acid in softwood, a known precursor of retene and phenanthrene. PAH in soot from five spruce samples from different locations show a mean ∑40 PAH concentration of 13.46 mg/kg (n = 5, minimum 8.03, maximum 23.32 mg/kg, SD = 5.65) and exhibited a typical pattern that differed from all other wood soot samples. The distributions of alkylated naphthalenes of the spruce samples show a bell-shape distribution in contrast to the alkylated phenanthrenes/anthracenes of all samples (except the wood pellets), showing a slope distribution. The data indicate that wood-specific PAH patterns exist and under the applied conditions, spruce logs produced the least toxic soot.  相似文献   
67.
Climate change is altering nutrient cycling within the Arctic Ocean, having knock-on effects to Arctic ecosystems. Primary production in the Arctic is principally nitrogen-limited, particularly in the western Pacific-dominated regions where denitrification exacerbates nitrogen loss. The nutrient status of the eastern Eurasian Arctic remains under debate. In the Barents Sea, primary production has increased by 88% since 1998. To support this rapid increase in productivity, either the standing stock of nutrients has been depleted, or the external nutrient supply has increased. Atlantic water inflow, enhanced mixing, benthic nitrogen cycling, and land–ocean interaction have the potential to alter the nutrient supply through addition, dilution or removal. Here we use new datasets from the Changing Arctic Ocean program alongside historical datasets to assess how nitrate and phosphate concentrations may be changing in response to these processes. We highlight how nutrient dynamics may continue to change, why this is important for regional and international policy-making and suggest relevant research priorities for the future.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01673-0.  相似文献   
68.
Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air–sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01658-z.  相似文献   
69.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
70.
Influence of soil properties and aging on Cu partitioning and toxicity was assessed on 10 artificial soils constituted using a statistical design considering pH (5.5 and 7.5), organic matter (1-30% [w/w]), and clay content (5-35% [w/w]). Total Cu as well as water-, CaCl2-, and diethylene triamine pentaacetic acid (DTPA)-extracted Cu fractions were determined for each soil mixture. Ecotoxic effect was assessed by determining growth inhibition of barley (Hordeum vulgare L.) and compost worm (Eisenia fetida) mortality. Analyses were repeated after a 16-wk aging period of the soils at pH 7.5 (8 x 2-wk wetting and drying cycle). Results indicated that pH was the main factor controlling Cu partitioning, ahead of organic matter and clay content. Calcium chloride (0.5 M)-extracted Cu fractions showed the best correlation with toxic responses (r = 0.55-0.66; p < 0.05), while total and DTPA-extracted Cu concentrations could not explain differences in toxicity. Direct regressions between toxicity and soil properties (pH, organic matter, and clay content) provided better explanation of variance: r2= 0.50 (p = 0.00006) for compost worm mortality, r2= 0.77 (p < 0.00001) for barley shoot inhibition, and r2= 0.92 (p < 0.00001) for barley root inhibition. Copper toxicity was mainly influenced by pH and, to a lesser extent, by organic matter and clay content. Aging in organic soils revealed a slight reduction in ecotoxicity while an increase was observed in soils with low organic matter content. Further investigation using longer aging periods would be necessary to assess the significance of this observation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号