首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   915篇
  免费   8篇
  国内免费   15篇
安全科学   27篇
废物处理   53篇
环保管理   93篇
综合类   142篇
基础理论   204篇
环境理论   2篇
污染及防治   302篇
评价与监测   55篇
社会与环境   58篇
灾害及防治   2篇
  2023年   2篇
  2022年   15篇
  2021年   17篇
  2020年   8篇
  2019年   8篇
  2018年   29篇
  2017年   36篇
  2016年   36篇
  2015年   31篇
  2014年   29篇
  2013年   93篇
  2012年   47篇
  2011年   73篇
  2010年   56篇
  2009年   55篇
  2008年   66篇
  2007年   53篇
  2006年   47篇
  2005年   31篇
  2004年   29篇
  2003年   31篇
  2002年   19篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   8篇
  1997年   9篇
  1996年   4篇
  1995年   12篇
  1994年   2篇
  1993年   4篇
  1991年   4篇
  1990年   3篇
  1987年   2篇
  1981年   3篇
  1965年   7篇
  1964年   3篇
  1963年   4篇
  1962年   9篇
  1961年   11篇
  1960年   1篇
  1958年   2篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
  1947年   1篇
  1942年   1篇
  1941年   2篇
  1938年   1篇
  1932年   1篇
排序方式: 共有938条查询结果,搜索用时 250 毫秒
321.
Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit?This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dar’s SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident financial deficit could else endanger the public-private partnership (PPP) and lead to failure of this setup in the medium to long term, thus also endangering the now existing improved and currently reliable service.We present four options on how financial sustainability of the SWM system in Bahir Dar might be enhanced: (i) improved fee collection efficiency by linking the fees of solid waste collection to water supply; (ii) increasing the value chain by sales of organic waste recycling products; (iii) diversifying revenue streams and financing mechanisms (polluter-pays-, cross-subsidy- and business-principles); and (iv) cost reduction and improved cost-effectiveness.We argue that in a PPP setup such as in Bahir Dar, a strong alliance between the municipality and private enterprise is important so that appropriate solutions for improved financial sustainability of a SWM system can be sought and implemented.  相似文献   
322.
Groundwater contamination by nitrate was investigated in an agricultural area in southern Quebec, Canada, where a municipal well is the local source of drinking water. A network of 38 piezometers was installed within the capture zone of the municipal well to monitor water table levels and nitrate concentrations in the aquifer. Nitrate concentrations were also measured in the municipal well. A Water flow and Nitrate transport Global Model (WNGM) was developed to simulate the impact of agricultural activities on nitrate concentrations in both the aquifer and municipal well. The WNGM first uses the Agriflux model to simulate vertical water and nitrate fluxes below the root zone for each of the seventy agricultural fields located within the capture zone of the municipal well. The WNGM then uses the HydroGeoSphere model to simulate three-dimensional variably-saturated groundwater flow and nitrate transport in the aquifer using water and nitrate fluxes computed with the Agriflux model as the top boundary conditions. The WNGM model was calibrated by reproducing water levels measured from 2005 to 2007 in the network of piezometers and nitrate concentrations measured in the municipal well from 1997 to 2007. The nitrate concentrations measured in the network of piezometers, however, showed greater variability than in the municipal well and could not be reproduced by the calibrated model. After calibration, the model was validated by successfully reproducing the decrease of nitrate concentrations observed in the municipal well in 2006 and 2007. Although it cannot predict nitrate concentrations in individual piezometers, the calibrated and validated WNGM can be used to assess the impact of changes in agricultural practices on global nitrate concentrations in the aquifer and in the municipal well.  相似文献   
323.
Christian Körner 《Ambio》2012,41(3):197-206
Trees are taller than shrubs, grasses, and herbs. What is the disadvantage of being tall so that trees are restricted to warmer regions than low stature life forms? This article offers a brief review of the current state of biological treeline theory, and then explores the significance of tallness from a carbon balance, freezing resistance, and microclimatological perspective. It will be argued that having of a woody stem is neither a burden to the carbon balance nor does it add to the risk of freezing damage. The physiological means of trees to thrive in cold climates are similar to small stature plants, but due to their size, and, thus, closer aerodynamic coupling to air circulation, trees experience critically low temperatures at lower elevation and latitude than smaller plants. Hence, trees reach a limit at treeline for physical reasons related to their stature.  相似文献   
324.
Total 210Pb and 7Be fallout rates were measured on the coastal region of Niteroi, Brazil. The monthly depositional flux of 210Pb and 7Be varied by a factor of 26, from 1.7 to 43.3 mBq cm−2 year−1 and ∼27, from 7.5 to 203.5 mBq cm−2 year−1, respectively. The relatively large oscillations in the depositional flux of 210Pb at this study site were likely due to variations in air mass sources, while the 7Be fluctuations may be driven by a combination of weather conditions. Local geology could support the periodic high fluxes of 210Pb from continental air masses, as shifting oceanic wind sources were affirmed by the uncorrelated 210Pb and 7Be fallout activities and 7Be/210Pb ratios. The 210Pb atmospheric deposition was found to be in agreement with local sediment inventories, an important consideration in geochemical studies that estimate sedimentation processes.  相似文献   
325.
Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn (67Zn) ZnO nanoparticles and measured the uptake of 67Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range (<15 μg g−1). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 μg g−1 which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions.  相似文献   
326.

Background and scope  

Effect-directed analysis is increasingly used for the identification of key toxicants in environmental samples and there is a growing need for in vivo biotests as diagnostic tools. Within this study, we performed an in vivo sediment contact test, applicable on both native field samples and their extracts or fractions, in order to be able to compare the results from both field and laboratory studies.  相似文献   
327.
The effects of two gas-phase chemical kinetic mechanisms, Regional Atmospheric Chemistry Mechanism version 2 (RACM2) and Carbon-Bond 05 (CB05), and two secondary organic aerosol (SOA) modules, the Secondary Organic Aerosoi Model (SORGAM) and AER/EPRI/Caltech model (AEC), on fine (aerodynamic diameter < or =2.5 microm) particulate matter (PM2.5) formation is studied. The major sources of uncertainty in the chemistry of SOA formation are investigated. The use of all major SOA precursors and the treatment of SOA oligomerization are found to be the most important factors for SOA formation, leading to 66% and 60% more SOA, respectively. The explicit representation of high-NO, and low-NOx gas-phase chemical regimes is also important with increases in SOA of 30-120% depending on the approach used to implement the distinct SOA yields within the gas-phase chemical kinetic mechanism; further work is needed to develop gas-phase mechanisms that are fully compatible with SOA formation algorithms. The treatment of isoprene SOA as hydrophobic or hydrophilic leads to a significant difference, with more SOA being formed in the latter case. The activity coefficients may also be a major source of uncertainty, as they may differ significantly between atmospheric particles, which contain a myriad of SOA, primary organic aerosol (POA), and inorganic aerosol species, and particles formed in a smog chamber from a single precursor under dry conditions. Significant interactions exist between the uncertainties of the gas-phase chemistry and those of the SOA module.  相似文献   
328.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   
329.
In previous studies, boron compounds were considered to be of comparatively low toxicity in the aquatic environment, with predicted no effect concentration (PNEC) values ranging around 1 mg B/L (expressed as boron equivalent). In the present study, we describe an evaluation of toxicity data for boron available for the aquatic environment by different methods.For substances with rich datasets, it is often possible to perform a species sensitivity distribution (SSD). The typical outcome of an SSD is the Hazardous Concentration 5% (HC5), the concentration at which 95% of all species are protected with a probability of 95%. The data set currently available on the toxic effects of boron compounds to aquatic organisms is comprehensive, but a careful evaluation of these data revealed that chronic data for aquatic insects and plants are missing. In the present study both the standard assessment factor approach as well as the SSD approach were applied. The standard approach led to a PNEC of 0.18 mg B/L (equivalent to 1.03 mg boric acid/L), while the SSD approach resulted in a PNEC of 0.34 mg B/L (equivalent to 1.94 mg boric acid/L). These evaluations indicate that boron compounds could be hazardous to aquatic organisms at concentrations close to the natural environmental background in some European regions. This suggests a possible high sensitivity of some ecosystems for anthropogenic input of boron compounds. Another concern is that the anthropogenic input of boron could lead to toxic effects in organisms adapted to low boron concentration.  相似文献   
330.
Flame retardants and legacy contaminants were analyzed in adipose tissue from 11 circumpolar polar bear (Ursus maritimus) subpopulations in 2005-2008 spanning Alaska east to Svalbard. Although 37 polybrominated diphenyl ethers (PBDEs), total-(α)-hexabromocyclododecane (HBCD), 2 polybrominated biphenyls (PBBs), pentabromotoluene, pentabromoethylbenzene, hexabromobenzene, 1,2-bis(2,4,6-tribromophenoxy(ethane) and decabromodiphenyl ethane were screened, only 4 PBDEs, total-(α-)HBCD and BB153 were consistently found. Geometric mean ΣPBDE (4.6-78.4 ng/g lipid weight (lw)) and BB153 (2.5-81.1 ng/g lw) levels were highest in East Greenland (43.2 and 39.2 ng/g lipid weight (lw), respectively), Svalbard (44.4 and 20.9 ng/g lw) and western (38.6 and 30.1 ng/g lw) and southern Hudson Bay (78.4 and 81.1 ng/g lw). Total-(α)-HBCD levels (<0.3-41.1 ng/g lw) were lower than ΣPBDE levels in all subpopulations except in Svalbard, consistent with greater European HBCD use versus North American pentaBDE product use. ΣPCB levels were high relative to flame retardants as well as other legacy contaminants and increased from west to east (1797-10,537 ng/g lw). ΣCHL levels were highest among legacy organochlorine pesticides and relatively spatially uniform (765-3477 ng/g lw). ΣDDT levels were relatively low and spatially variable (31.5-206 ng/g lw). However, elevated proportions of p,p'-DDT to ΣDDT in Alaska and Beaufort Sea relative to other subpopulations suggested fresh inputs from vector control use in Asia and/or Africa. Comparing earlier circumpolar polar bear studies, ΣPBDE, total-(α)-HBCD, p,p'-DDE and ΣCHL levels consistently declined, whereas levels of other legacy contaminants did not. International regulations have clearly been effective in reducing levels of several legacy contaminants in polar bears relative to historical levels. However, slow or stalling declines of certain historic pollutants like PCBs and a complex mixture of "new" chemicals continue to be of concern to polar bear health and that of their arctic marine ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号