首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1178篇
  免费   42篇
  国内免费   26篇
安全科学   57篇
废物处理   63篇
环保管理   318篇
综合类   106篇
基础理论   321篇
环境理论   4篇
污染及防治   240篇
评价与监测   78篇
社会与环境   50篇
灾害及防治   9篇
  2023年   16篇
  2022年   15篇
  2021年   17篇
  2020年   25篇
  2019年   17篇
  2018年   43篇
  2017年   45篇
  2016年   68篇
  2015年   49篇
  2014年   47篇
  2013年   90篇
  2012年   68篇
  2011年   88篇
  2010年   56篇
  2009年   61篇
  2008年   62篇
  2007年   64篇
  2006年   53篇
  2005年   32篇
  2004年   45篇
  2003年   35篇
  2002年   32篇
  2001年   16篇
  2000年   18篇
  1999年   17篇
  1998年   18篇
  1997年   19篇
  1996年   15篇
  1995年   8篇
  1994年   5篇
  1993年   12篇
  1992年   11篇
  1991年   11篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   6篇
  1982年   7篇
  1981年   3篇
  1980年   7篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1971年   1篇
  1970年   1篇
  1960年   1篇
排序方式: 共有1246条查询结果,搜索用时 0 毫秒
91.
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   
92.
The project on Biodiversity Uncertainties and Research Needs (BURN) ensures the advancement of usable knowledge on biodiversity by obtaining input from decision makers on their priority information needs about biodiversity and then using this input to engage leading scientists in designing policy-relevant research. Decision makers articulated concerns related to four issues: significance of biodiversity; status and trends of biodiversity; management for biodiversity; and the linkage of social, cultural, economic, legal, and biological objectives. Leading natural and social scientists then identified the research required to address the decision makers' needs and determined the probability of success. The diverse group of experts reached consensus on several fundamental issues, helping to clarify the role of biodiversity in land and resource management. The BURN participants identified several features that should be incorporated into policy-relevant research plans and management strategies for biodiversity. Research and assessment efforts should be: multidisciplinary and integrative, participatory with stakeholder involvement, hierarchical (multiple scales), and problem- and region-specific. The activities should be focused regionally within a global perspective. Meta-analysis of existing data is needed on all fronts to assess the state of the science. More specifically, the scientists recommended six priority research areas that should be pursued to address the information needs articulated by decision makers: (1) characterization of biodiversity, (2) environmental valuation, (3) management for sustainability—for humans and the environment (adaptive management), (4) information management strategies, (5) governance and stewardship issues, and (6) communication and outreach. Broad recommendations were developed for each research area to provide direction for research planning and resource management strategies. The results will directly benefit those groups that require biodiversity research to address their needs—whether to develop policy, manage natural resources, or make other decisions affecting biodiversity.  相似文献   
93.
ABSTRACT: A meandering stream channel was simulated in the Hydraulics Laboratory at Colorado State University and a series of tests was conducted using four types of vegetation to evaluate the potential effects of vegetation on sediment deposition and retention in a stream channel. The data collected included average flow velocity, flow depth, length of vegetation, density of vegetation, cross-sectional area of the vegetative stem, wetted perimeter of the vegetative stem, and injection and flushing time. The findings indicated that the vegetation could retain from 30 to 70 percent of the deposited sediments. The ability of vegetation to entrap and retain sediment is related to the length and cross-sectional area of the vegetation. The variables describing the flow and the vegetative properties were combined to form a predictive parameter, the sedimentation factor (Sd) that can be compared with the amount of sediment entrapped by vegetation in a stream system. A relation was developed correlating vegetation length to sediment retention after flushing for flexibility and rigid vegetation.  相似文献   
94.
95.
Brownfields that are reused for the generation of renewable energy are called brightfields. This rapidly emerging idea advocates the combination sustainable site reuse and the generation of electricity from renewables. While programmes like the RE-Powering America's Land Initiative herald its benefits, academia knows but little of its barriers and challenges. This study aims to examine the technical/environmental, regulator/financial/institutional, and social barriers to this type of development, along with measures that may address them. The barriers and measures were predominately identified via a qualitative and quantitative survey sent to brightfield developers (experts), along with a review of case studies and the emerging brightfield literature. The study found that environmental/technical barriers only differ from ‘conventional’ renewable energy projects (e.g. on Greenfields) in the event of site contamination. The latter then is what makes brightfields unique and is the source for a myriad of challenges concerning risk and liability, which cause financial problems and investment hesitance. However, evidence conjectures that there is less contextual public opposition to brightfields compared to conventional renewable energy.  相似文献   
96.
By discharging excess stormwater at rates that more frequently exceed the critical flow for stream erosion, conventional detention basins often contribute to increased channel instability in urban and suburban systems that can be detrimental to aquatic habitat and water quality, as well as adjacent property and infrastructure. However, these ubiquitous assets, valued at approximately $600,000 per km2 in a representative suburban watershed, are ideal candidates to aid in reversing such cycles of channel degradation because improving their functionality would not necessarily require property acquisition or heavy construction. The objective of this research was to develop a simple, cost‐effective device that could be installed in detention basin outlets to reduce the erosive power of the relatively frequent storm events (~ < two‐year recurrence) and provide a passive bypass to maintain flood control performance during infrequent storms (such as the 100‐year recurrence). Results from a pilot installation show that the Detain H2O device reduced the cumulative sediment transport capacity of the preretrofit condition by greater than 40%, and contributed to reduced flashiness and prolonged baseflows in receiving streams. When scaling the strategy across a watershed, these results suggest that potential gains in water quality and stream channel stability could be achieved at costs that are orders of magnitude less than comparable benefits from newly constructed stormwater control measures.  相似文献   
97.
Water resources are increasingly impacted by growing human populations, land use, and climate changes, and complex interactions among biophysical processes. In an effort to better understand these factors in semiarid northern Utah, United States, we created a real‐time observatory consisting of sensors deployed at aquatic and terrestrial stations to monitor water quality, water inputs, and outputs along mountain to urban gradients. The Gradients Along Mountain to Urban Transitions (GAMUT) monitoring network spans three watersheds with similar climates and streams fed by mountain winter‐derived precipitation, but that differ in urbanization level, land use, and biophysical characteristics. The aquatic monitoring stations in the GAMUT network include sensors to measure chemical (dissolved oxygen, specific conductance, pH, nitrate, and dissolved organic matter), physical (stage, temperature, and turbidity), and biological components (chlorophyll‐a and phycocyanin). We present the logistics of designing, implementing, and maintaining the network; quality assurance and control of numerous, large datasets; and data acquisition, dissemination, and visualization. Data from GAMUT reveal spatial differences in water quality due to urbanization and built infrastructure; capture rapid temporal changes in water quality due to anthropogenic activity; and identify changes in biological structure, each of which are demonstrated via case study datasets.  相似文献   
98.
Armoring of streambanks is a common management response to perceived threats to adjacent infrastructure from flooding or erosion. Despite their pervasiveness, effects of reach‐scale bank armoring have received less attention than those of channelization or watershed‐scale hydromodification. In this study, we explored mechanistic ecosystem responses to armoring by comparing conditions upstream, within, and downstream of six stream reaches with bank armoring in Southern California. Assessments were based on four common stream‐channel assessment methods: (1) traditional geomorphic measures, (2) the California Rapid Assessment Method for wetlands, (3) bioassessment with benthic macroinvertebrates, and (4) bioassessment with stream algae. Although physical responses varied among stream types (mountain, transitional, and lowland), armored segments generally had lower slopes, more and deeper pools and fewer riffles, and increased sediment deposition. Several armored segments exhibited channel incision and bank toe failure. All classes of biological indicators showed subtle, mechanistic responses to physical changes. However, extreme heterogeneity among sites, the presence of catchment‐scale disturbances, and low sample size made it difficult to ascribe observed patterns solely to channel armoring. The data suggest that species‐level or functional group‐level metrics may be more sensitive tools than integrative indices of biotic integrity to local‐scale effects.  相似文献   
99.
In water stressed regions, water managers are exploring new horizons that would help in long‐range streamflow forecasts. Oceanic‐atmospheric oscillations have been shown to influence streamflow variability. In this study, long‐lead time streamflow forecasts are made using a multiclass kernel‐based data‐driven support vector machine (SVM) model. The extended streamflow records based on tree ring reconstructions were used to provide a longer time series data. Reconstructed data were used from 1658 to 1952 and the instrumental record was used from 1953 to 2007. Reconstructions for oceanic‐atmospheric oscillations included the El Niño‐Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, and North Atlantic Oscillation. Streamflow forecasts using all four oscillations were made with one‐year to five‐year lead times for 21 gages in the western United States. This is the first study that uses both instrumental and reconstructed data of oscillations in SVM model to improve streamflow forecast lead time. SVM model was able to provide “satisfactory” to “very good” forecasts with one‐ to five‐year lead time for the selected gages. The use of all the oscillation indices helped in achieving better predictability compared to using individual oscillations. The SVM modeling results are better when compared with multiple linear regression model forecasts. The findings are statistical in nature and are expected to be useful for long‐term water resources planning and management.  相似文献   
100.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号