首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   17篇
  国内免费   103篇
安全科学   33篇
废物处理   34篇
环保管理   32篇
综合类   146篇
基础理论   82篇
污染及防治   206篇
评价与监测   27篇
社会与环境   23篇
灾害及防治   10篇
  2024年   1篇
  2023年   8篇
  2022年   24篇
  2021年   17篇
  2020年   17篇
  2019年   10篇
  2018年   11篇
  2017年   9篇
  2016年   13篇
  2015年   14篇
  2014年   30篇
  2013年   56篇
  2012年   40篇
  2011年   42篇
  2010年   13篇
  2009年   26篇
  2008年   26篇
  2007年   51篇
  2006年   21篇
  2005年   19篇
  2004年   13篇
  2003年   31篇
  2002年   14篇
  2001年   18篇
  2000年   12篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有593条查询结果,搜索用时 62 毫秒
131.
Chu  Huaqiang  Liu  Ya  Xu  Nian  Xu  Junchao 《Environmental Chemistry Letters》2023,21(2):1203-1230
Environmental Chemistry Letters - Heavy metals are a common class of toxic contaminants in soil, water and air, yet their occurrence in indoor environments is less known. Heavy metals enter...  相似文献   
132.
In this paper, the response mechanism of activated sludge exposed to low-dose ozone at less than 20 mg O3 g−1 total suspended solids (TSS) was studied by analyzing the changes in sludge activity and the evolution of C, N, P and metals from sludge following ozonation. The intracellular ATP concentration was not affected at less than 5 mg O3 g−1 TSS and thereafter decreased rapidly to around 60% when the ozone dose increased to 20 mg O3 g−1 TSS. Similarly, the efficiency of sludge solubilization initially changed a little and then increased rapidly to around 30% at an ozone dose of 20 mg O3 g−1 TSS. However, the activities of superoxide dismutase and protease decreased immediately upon exposure to ozone. These findings indicate that ozone firstly destroys the floc, leading to the disruption of the compact aggregates, which does not affect cells viability but induces a decrease in enzyme activities. Ozone then attacks the bacterial cells of the sludge, causing a decrease in cells viability. During ozonation, the content of carbon, nitrogen and phosphorus in the sludge matrix decreased, while the content of these elements in the micro-solids and supernatant gradually increased. Most of the released metals from the sludge matrix were found in the micro-solids.  相似文献   
133.
本文通过对辽东湾北部和东、西两侧滨海地区108个地下水井的监测数据进行分析,得出:(1)辽东湾海水入侵严重地区主要分布在辽东湾北部淤泥质海岸,其分布特点是严重海水入侵区、轻度海水入侵区由岸向陆呈带状分布;东西两侧以砂砾质海岸为主,局部地区海水入侵较重,大部分地区海水入侵较轻;(2)辽东湾地下水化学类型可分为五种类型,其分布特点是由岸向陆呈带状分布,规律明显,反映了海水入侵分布特征。氯化物型一般分布在微咸水至咸水区,重碳酸盐氯化物型或氯化物重碳酸盐型、重碳酸盐氯化物硫酸盐型或氯化物重碳酸盐硫酸盐型分布在微咸水向淡水过渡区,硫酸盐重碳酸盐型或重碳酸盐硫酸盐型、重碳酸盐型主要分布在淡水区。  相似文献   
134.
Chu W  Chan KH  Choy WK 《Chemosphere》2006,64(5):711-716
Soil sorption of organic pollutants has long been a problematic in the soil washing process because of its durability and low water solubility. This paper discussed the soil washing phenomena over a wide range of parathion concentrations and several soil samples at various fractions of organic content (foc) levels. When parathion dosage is set below the water solubility, washing performance is stable for surfactant concentrations above critical micelle concentration (cmc) and it is observed that more than 90% of parathion can be washed out when dosage is five times lower than the solubility limit. However, such trends change when non-aqueous phase liquids (NAPL) is present in the system. Parathion extraction depends very much on the surfactant dosage but is not affected by the levels of foc in the system. In between the extreme parathion dosage, a two-stage pattern is observed in these boundary regions. Washing performance is first increased with additional surfactant, but the increase slows down gradually since the sorption sites are believed to be saturated by the huge amount of surfactant in the system. A mathematical model has included foc to demonstrate such behavior and this can be used as a prediction for extraction.  相似文献   
135.
As marine disposal of sewage sludge and dredged sediments may impose serious adverse effects to marine ecosystems, landfilling seems to be the most feasible method for the final disposal of these wastes. A batch experiment was conducted to study waste degradation and gas production after sewage sludge and marine dredgings were mixed with municipal refuse at 13 different ratios for 36 days. The addition of sludge and dredgings to municipal refuse enhanced gas production, compared with the degradation of refuse or sludge alone. A proper mixing ratio of wastes can also shorten the time to reach the final phase of anaerobiosis. The highest gas production was obtained from the ratio of 75-20-5 (refuse-sludge-dredgings) (wet weight basis). Its average daily gas production rate was 1.42 l kg(-1) waste mixture; methane content was 68.3%. The results indicated that codisposal of the three wastes would be beneficial for energy recovery from landfill gas.  相似文献   
136.
Viruses from contaminant sources can be transported through porous media to drinking water wells. The objective of this study was to investigate inactivation and sorption of viruses during saturated and unsaturated transport in different soils. Bacteriophages phiX174 and MS-2, and Br- tracer in a phosphate-buffered saline solution were introduced into saturated and unsaturated soil columns as a step function under constant flow rate and hydraulic conditions. Results showed that significantly greater virus removal occurred in the unsaturated columns than in the saturated columns in the two soils containing high metal oxides content. However, the increase in virus retention under unsaturated conditions was not significant in two other soils having high phosphorus and calcium contents and high pH, and in another soil with high organic matter content. The results imply that the extent of water content effect on inactivation and sorption of viruses can range from significant to minimal depending on the properties of the transport medium. We found that the presence of in situ metal oxides was a significant factor responsible for virus sorption and inactivation. Therefore, soils with high metal oxides content may have the potential to be used as hydrological barriers in preventing microbial contamination in the subsurface environments. We also found that the water content effect on virus removal and inactivation strongly depended on solid properties of the testing medium.  相似文献   
137.
Chlorinated phenols are major industrial and agricultural xenobiotics that pollute soil and ground water. It has been shown that laccases catalyze the oxidative coupling of phenolic compounds. Therefore, the transformation of one or a mixture of several chlorinated phenols by a laccase from the fungus Trametes villosa was studied. Generally, if more than one phenol was added, the transformation of chlorinated phenols decreased, and if the concentration of the laccase was increased, the transformation of the phenols was enhanced. There were exceptions to these observations: for instance, the transformation of 0.1 mM 4-chlorophenol incubated with 1 mM 2,4-dichlorophenol in buffered salt solutions was not enhanced if the concentration of the laccase was increased from 2 to 20 DMP units/mL. The reason for the reduced transformation of chlorinated phenols in the presence of additional phenols is still unknown. However, in spite of some limitations, the application of laccase to decontaminate wastewater polluted with chlorinated phenols appears feasible.  相似文献   
138.
Recent studies have shown that dechlorinating bacteria can accelerate the dissolution rate of dense, nonaqueous phase liquids (DNAPLs) containing tetrachloroethene (PCE). We present an advection-dispersion-reaction model for a two-dimensional domain, with groundwater flowing over a pool of free-product PCE. PCE is converted to cis-1,2-dichloroethene (cDCE) and toxicity due to PCE or cDCE is neglected. We adopt previously published correlations relating biomass concentrations and hydraulic conductivity, accounting for biofilm growth and plug-like growth. The system of coupled equations is solved numerically. The high biotransformation rate of PCE increases the concentration gradient of PCE at the water-DNAPL interface, enhancing dissolution. The higher the electron donor (ED) concentration, the larger the dissolution enhancement. Based on the values of maximum specific rate we used, when the electron donor is unlimited, the active biomass accumulates adjacent to the water-NAPL interface and microbial reactions can significantly enhance the pool dissolution. The resulting steady-state dissolution rate can be approximated by a half-order solution when zero-order kinetics are suitable for representing the microbial reaction. However, bioclogging may significantly reduce local hydraulic conductivity; thus, it decreases the flow near the water-DNAPL interface, decreasing dissolution. When the ED is the limiting factor, active biomass accumulates away from the interface. This creates a no-flow zone between the active biomass and the interface. The enlargement of the no-flow zone, due to the donor limitation, diminishes the concentration gradient and the flushing around the water-DNAPL interface. Such adverse impacts may significantly decrease the enhancement predicted by models that do not consider the effects of bioclogging.  相似文献   
139.
The removal system for the absorption of CO2 with amines and NH3 is an advanced air pollution control device to reduce greenhouse gas emissions. Absorption of CO2 by amines and NH3 solutions was performed in this study to derive the reaction kinetics. The absorption of CO2 as encountered in flue gases into aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), and NH3 was carried out using a stirred vessel with a plane gas-liquid interface at 50 degrees C. Various operating parameters were tested to determine the effect of these variables on the absorption kinetics of the reactants in both gas and liquid phases and the effect of competitions between various reactants on the mass-transfer rate. The observed absorption rate increases with increasing gas-liquid concentration, solvent concentration, temperature, and gas flow rate, but changes with the O2 concentration and pH value. The absorption efficiency of MEA is better than that of NH3 and DEA, but the absorption capacity of NH3 is the best. The active energies of the MEA and NH3 with CO2 are 33.19 and 40.09 kJ/mol, respectively.  相似文献   
140.
Organic contamination in the greenhouse soils from Beijing suburbs, China   总被引:1,自引:0,他引:1  
Selected persistent organic pollutants including HCHs, DDTs and PAHs together with PAEs were determined in the greenhouse soils from Beijing suburbs. The total concentrations were 11.64-29.80 ng g(-1) for HCHs, 18.04-101.33 ng g(-1) for DDTs, 1.34-3.15 microg g(-1) for PAEs and 1.92-7.84 microg g(-1) for PAHs, respectively. Predominance of beta-HCH in all samples was obviously observed, suggesting a lack of new HCHs sources. High concentrations of DDE and DDD in comparison to their parents in the samples indicated that most of the DDT had been transformed into its metabolites. The contamination of PAHs was relatively serious and the most abundant compounds were 4-, 5- and 6-ring unsubstituted PAHs. The profiles reflect the important effect of traffic on the PAHs remaining in greenhouse soils. Three phthalate esters (DIBP, DnBP and DEHP) accounted for more than 97% of the phthalates studied. Analysis of n-alkanes was also performed in order to trace the natural or anthropogenic sources of hydrocarbons. Characterization and identification of these compounds in greenhouse soil may help in development of strategies to be used in monitoring organic pollutants in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号