首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   10篇
  国内免费   5篇
安全科学   7篇
废物处理   22篇
环保管理   41篇
综合类   66篇
基础理论   92篇
环境理论   1篇
污染及防治   109篇
评价与监测   29篇
社会与环境   24篇
灾害及防治   2篇
  2023年   4篇
  2022年   7篇
  2021年   13篇
  2020年   8篇
  2019年   10篇
  2018年   14篇
  2017年   17篇
  2016年   24篇
  2015年   9篇
  2014年   22篇
  2013年   30篇
  2012年   21篇
  2011年   30篇
  2010年   25篇
  2009年   21篇
  2008年   16篇
  2007年   11篇
  2006年   14篇
  2005年   9篇
  2004年   13篇
  2003年   14篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1969年   2篇
  1959年   1篇
  1936年   1篇
  1932年   4篇
排序方式: 共有393条查询结果,搜索用时 46 毫秒
111.
Climate change, overfishing, and other anthropogenic drivers are forcing marine resource users and decision makers to adapt—often rapidly. In this article we introduce the concept of pathways to rapid adaptation to crisis events to bring attention to the double-edged role that institutions play in simultaneously enabling and constraining swift responses to emerging crises. To develop this concept, we draw on empirical evidence from a case study of the iconic Maine lobster (Homarus americanus) industry. In the Gulf of Maine, the availability of Atlantic herring (Clupea harengus) stock, a key source of bait in the Maine lobster industry, declined sharply. We investigate the patterns of bait use in the fishery over an 18-year period (2002–2019) and how the lobster industry was able to abruptly adapt to the decline of locally-sourced herring in 2019 that came to be called the bait crisis. We found that adaptation strategies to the crisis were diverse, largely uncoordinated, and imperfectly aligned, but ultimately led to a system-level shift towards a more diverse and globalized bait supply. This shift was enabled by existing institutions and hastened an evolution in the bait system that was already underway, as opposed to leading to system transformation. We suggest that further attention to raceways may be useful in understanding how and, in particular, why marine resource users and coastal communities adapt in particular ways in the face of shocks and crises.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01617-8.  相似文献   
112.
The Arctic is nutrient limited, particularly by nitrogen, and is impacted by anthropogenic global warming which occurs approximately twice as fast compared to the global average. Arctic warming intensifies thawing of permafrost-affected soils releasing their large organic nitrogen reservoir. This organic nitrogen reaches hydrological systems, is remineralized to reactive inorganic nitrogen, and is transported to the Arctic Ocean via large rivers. We estimate the load of nitrogen supplied from terrestrial sources into the Arctic Ocean by sampling in the Lena River and its Delta. We took water samples along one of the major deltaic channels in winter and summer in 2019 and sampling station in the central delta over a one-year cycle. Additionally, we investigate the potential release of reactive nitrogen, including nitrous oxide from soils in the Delta. We found that the Lena transported nitrogen as dissolved organic nitrogen to the coastal Arctic Ocean and that eroded soils are sources of reactive inorganic nitrogen such as ammonium and nitrate. The Lena and the Deltaic region apparently are considerable sources of nitrogen to nearshore coastal zone. The potential higher availability of inorganic nitrogen might be a source to enhance nitrous oxide emissions from terrestrial and aquatic sources to the atmosphere.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01665-0.  相似文献   
113.
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future.

Implications: Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.  相似文献   

114.
115.
Regional Environmental Change - Vegetation actively affects different components of the water budget in multiple spatial and temporal scales. Changes in vegetation cover and structure—such as...  相似文献   
116.
Biochar derived from pyrolysis has received much attention recently as a soil additive to sequester carbon and increase soil fertility. Hydrochar, a brown, coal-like substance produced via hydrothermal carbonization, has also been suggested as a beneficial soil additive. However, before soil application, both types of char need to be tested for potential toxic effects. The aim of this study was to develop simple, inexpensive, and easy-to-apply test procedures to identify negative effects of chars but not to provide false-negative results. The following tests, based partly on ISO norm biotoxicity test procedures, were chosen: (i) cress germination test for gaseous phytotoxic emissions; (ii) barley germination and growth test; (iii) salad germination test; and (iv) earthworm avoidance test for toxic substances. Test reproducibility was ensured by carrying out each test procedure three times with the same biochar. Several modifications were necessary to adapt the tests for biochars/hydrochars. The tested biochar did not induce negative effects in any of the tests. In contrast, the beet-root chip hydrochar showed negative effects in all tests. In an extension to the regular procedure, a regrowth of the harvested barley shoots without further nutrient additions yielded positive results for the hydrochar, which initially had negative effects. This implies that the harmful substance(s) must have been degraded or they were water soluble and leached. Tests with a biochar and hydrochar showed that the proposed modified quick-check test procedures provide a fast assessment of risks and effects of char application to soils within a short period of time (<2 wk).  相似文献   
117.
Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.  相似文献   
118.
Crop-raiding elephants affect local livelihoods, undermining conservation efforts. Yet, crop-raiding patterns are poorly understood, making prediction and protection difficult. We hypothesized that raiding elephants use corridors between daytime refuges and farmland. Elephant counts, crop-raiding records, household surveys, Bayesian expert system, and least-cost path simulation were used to predict four alternative categories of daily corridors: (1) footpaths, (2) dry river beds, (3) stepping stones along scattered small farms, and (4) trajectories of shortest distance to refuges. The corridor alignments were compared in terms of their minimum cumulative resistance to elephant movement and related to crop-raiding zones quantified by a kernel density function. The “stepping stone” corridors predicted the crop-raiding patterns. Elephant presence was confirmed along these corridors, demonstrating that small farms located between refuges and contiguous farmland increase habitat connectivity for elephant. Our analysis successfully predicted elephant occurrence in farmland where daytime counts failed to detect nocturnal presence. These results have conservation management implications.  相似文献   
119.
The recent increase in European temperatures led to a strong enhancement in the occurrence of extremely warm events, with relevant consequences for environment and everyday life. Here, we investigate the evolution of very intense warm and cold events in a south-western European zone during 1961–2007 at a seasonal level. Special attention is given to summertime when warming is the most pronounced. Using a previously developed theoretical model, we discuss how the average properties and long-term trends observed in probability density functions of daily temperatures can explain changes in the frequency of severe, isolated events. In this perspective, the recent intensification of extremely warm events, especially experienced by the Mediterranean zone, is proved to be well consistent with a pure shift of seasonal mean temperatures. On the other hand, any change in the second and higher distributional moments of daily temperatures is ruled out by the data, whereas the average values of these properties, that is, variability and asymmetry, do play a role by shaping the temporal behavior of very intense events.  相似文献   
120.
Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984–2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007–2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号