Denitrification is a critical biogeochemical process that results in the conversion of nitrate to volatile products, and thus is a major route of nitrogen loss from terrestrial environments. Riparian buffers are an important management tool that is widely utilized to protect water from non-point source pollution. However, riparian buffers vary in their nitrate removal effectiveness, and thus there is a need for mechanistic studies to explore nitrate dynamics in buffer soils. The objectives of this study were to examine the influence of specific types of soluble organic matter on nitrate loss and nitrous oxide production rates, and to elucidate the relationships between these rates and the abundances of functional genes in a riparian buffer soil. Continuous-flow soil column experiments were performed to investigate the effect of three types of soluble organic matter (citric acid, alginic acid, and Suwannee River dissolved organic carbon) on rates of nitrate loss and nitrous oxide production. We found that nitrate loss rates increased as citric acid concentrations increased; however, rates of nitrate loss were weakly affected or not affected by the addition of the other types of organic matter. In all experiments, rates of nitrous oxide production mirrored nitrate loss rates. In addition, quantitative polymerase chain reaction (qPCR) was utilized to quantify the number of genes known to encode enzymes that catalyze nitrite reduction (i.e., nirS and nirK) in soil that was collected at the conclusion of column experiments. Nitrate loss and nitrous oxide production rates trended with copy numbers of both nir and 16s rDNA genes. The results suggest that low-molecular mass organic species are more effective at promoting nitrogen transformations than large biopolymers or humic substances, and also help to link genetic potential to chemical reactivity. 相似文献
Managers of the nearly 0.5 million ha of public lands in North and South Dakota, USA rely heavily on manual measurements of canopy height in autumn to ensure conservation of grassland structure for wildlife and forage for livestock. However, more comprehensive assessment of vegetation structure could be achieved for mixed-grass prairie by integrating field survey, topographic position (summit, mid and toeslope) and spectral reflectance data. Thus, we examined the variation of mixed-grass prairie structural attributes (canopy leaf area, standing crop mass, canopy height, nitrogen, and water content) and spectral vegetation indices (VIs) with variation in topographic position at the Grand River National Grassland (GRNG), South Dakota. We conducted the study on a 36,000-ha herbaceous area within the GRNG, where randomly selected plots (1?km2 in size) were geolocated and included summit, mid and toeslope positions. We tested for effects of topographic position on measured vegetation attributes and VIs calculated from Landsat TM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data collected in July 2010. Leaf area, standing crop mass, canopy height, nitrogen, and water content were lower at summits than at toeslopes. The simple ratio of Landsat Band 7/Band 1 (SR71) was the VI most highly correlated with canopy standing crop and height at plot and landscape scales. Results suggest field and remote sensing-based grassland assessment techniques could more comprehensively target low structure areas at minimal expense by layering modeled imagery over a landscape stratified into topographic position groups. 相似文献
Liu, Clark C.K. and John J. Dai, 2012. Seawater Intrusion and Sustainable Yield of Basal Aquifers. Journal of the American Water Resources Association (JAWRA) 48(5): 861‐870. DOI: 10.1111/j.1752‐1688.2012.00659.x Abstract: Basal aquifers, in which freshwater floats on top of saltwater, are the major freshwater supply for the Hawaiian Islands, as well as many other coastal regions around the world. Under unexploited or natural conditions, freshwater and the underlying seawater are separated by a relatively sharp interface located below mean sea level at a depth of about 40 times the hydraulic head. With forced draft, the hydraulic head of a basal aquifer would decline and the sharp interface would move up. It is a serious problem of seawater intrusion as huge amounts of freshwater storage is replaced by saltwater. Also, with forced draft, the sharp interface is replaced by a transition zone in which the salinity increases downward from freshwater to saltwater. As pumping continues, the transition zone expands. The desirable source‐water salinity in Hawaii is about 2% of the seawater salinity. Therefore, the transition zone expansion is another serious problem of seawater intrusion. In this study, a robust analytical groundwater flow and salinity transport model (RAM2) was developed. RAM2 has a simple mathematical structure and its model parameters can be determined satisfactorily with the available field monitoring data. The usefulness of RAM2 as a viable management tool for coastal ground water management is demonstrated by applying it to determine the sustainable yield of the Pearl Harbor aquifer, a principal water supply source in Hawaii. 相似文献
Sass, Christopher K. and Tim D. Keane, 2012. Application of Rosgen’s BANCS Model for NE Kansas and the Development of Predictive Streambank Erosion Curves. Journal of the American Water Resources Association (JAWRA) 48(4): 774‐787. DOI: 10.1111/j.1752‐1688.2012.00644.x Abstract: Sedimentation of waterways and reservoirs directly related to streambank erosion threatens freshwater supply. This study sought to provide a tool that accurately predicts annual streambank erosion rates in NE Kansas. Rosgen (2001, 2006) methods were employed and 18 study banks were measured and monitored from 2007 through 2010 (May‐June). Bank profiles were overlaid to calculate toe pin area change due to erosional processes. Streambanks experienced varied erosion rates from similar Bank Erosion Hazard Index (BEHI)‐Near Bank Stress (NBS) combinations producing R2 values of 0.77 High‐Very High BEHI rating and 0.75 Moderate BEHI rating regarding predictive erosion curves for NE Kansas. Moderate ratings demonstrated higher erosion rates than High‐Very High ratings and BEHI trend lines intersected at lower NBS ratings, suggesting a discrepancy in the fit of the model to conditions in the NE Kansas region. BEHI model factors were evaluated and assessed for additional influences exerted in the region. Woody vegetation adjacent to the stream seemed to provide the most variation in erosion rates. This study’s findings allowed us to calibrate and modify the existing BEHI model according to woody vegetation occurrence levels along streambanks with high clay content. Modifications regarding vegetation occurrence of the BEHI model was completed and the results of these modifications generated new curves resulting in R2 values of 0.84 High‐Very High BEHI and 0.88 Moderate BEHI ratings. 相似文献
Objective: The objective of this article is to provide empirical evidence for safe speed limits that will meet the objectives of the Safe System by examining the relationship between speed limit and injury severity for different crash types, using police-reported crash data.
Method: Police-reported crashes from 2 Australian jurisdictions were used to calculate a fatal crash rate by speed limit and crash type. Example safe speed limits were defined using threshold risk levels.
Results: A positive exponential relationship between speed limit and fatality rate was found. For an example fatality rate threshold of 1 in 100 crashes it was found that safe speed limits are 40 km/h for pedestrian crashes; 50 km/h for head-on crashes; 60 km/h for hit fixed object crashes; 80 km/h for right angle, right turn, and left road/rollover crashes; and 110 km/h or more for rear-end crashes.
Conclusions: The positive exponential relationship between speed limit and fatal crash rate is consistent with prior research into speed and crash risk. The results indicate that speed zones of 100 km/h or more only meet the objectives of the Safe System, with regard to fatal crashes, where all crash types except rear-end crashes are exceedingly rare, such as on a high standard restricted access highway with a safe roadside design. 相似文献
AbstractObjective: The current study investigated whether older drivers’ driving patterns during a customized on-road driving task were representative of their real-world driving patterns.Methods: Two hundred and eight participants (male: 68.80%; mean age?=?81.52 years, SD?=?3.37 years, range?=?76.00–96.00 years) completed a customized on-road driving task that commenced from their home and was conducted in their own vehicle. Participants’ real-world driving patterns for the preceding 4-month period were also collected via an in-car recording device (ICRD) that was installed in each participant’s vehicle.Results: During the 4-month period prior to completing the on-road driving task, participants’ median real-world driving trip distance was 2.66?km (interquartile range [IQR]?=?1.14–5.79?km) and their median on-road driving task trip distance was 4.41?km (IQR?=?2.83–6.35?km). Most participants’ on-road driving task trip distances were classified as representative of their real-world driving trip distances (95.2%, n?=?198).Conclusions: These findings suggest that most older drivers were able to devise a driving route that was representative of their real-world driving trip distance. Future research will examine whether additional aspects of the on-road driving task (e.g., average speed, proportion of trips in different speed zones) are representative of participants’ real-world driving patterns. 相似文献
Perfluorinated compounds (PFCs) are global environmental pollutants that bioaccumulate in wildlife and humans. Laboratory
experiments have revealed toxic effects such as delayed development, humoral suppression, and hepatotoxicity. Although numerous
human blood levels have been reported, little is known about distribution in the human body. Knowledge about PFC distribution
and accumulation in the human body is crucial to understanding uptake and subsequent effects as well as to conduct risk assessments.
The present study reports PFC levels in human liver and breast milk from a general population living in Catalonia, Spain.
Liver and milk levels are compared to previously reported levels in blood from the same geographic area as well as to other
existing reports on human liver and milk levels in other countries. 相似文献