首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21094篇
  免费   209篇
  国内免费   157篇
安全科学   550篇
废物处理   859篇
环保管理   2623篇
综合类   3325篇
基础理论   5618篇
环境理论   9篇
污染及防治   5874篇
评价与监测   1372篇
社会与环境   1111篇
灾害及防治   119篇
  2023年   115篇
  2022年   237篇
  2021年   264篇
  2020年   165篇
  2019年   219篇
  2018年   394篇
  2017年   411篇
  2016年   588篇
  2015年   405篇
  2014年   609篇
  2013年   1647篇
  2012年   728篇
  2011年   952篇
  2010年   745篇
  2009年   692篇
  2008年   985篇
  2007年   951篇
  2006年   870篇
  2005年   686篇
  2004年   745篇
  2003年   652篇
  2002年   594篇
  2001年   770篇
  2000年   504篇
  1999年   325篇
  1998年   260篇
  1997年   236篇
  1996年   241篇
  1995年   274篇
  1994年   298篇
  1993年   228篇
  1992年   263篇
  1991年   240篇
  1990年   271篇
  1989年   251篇
  1988年   206篇
  1987年   184篇
  1986年   179篇
  1985年   178篇
  1984年   203篇
  1983年   191篇
  1982年   203篇
  1981年   187篇
  1980年   146篇
  1979年   160篇
  1978年   139篇
  1977年   122篇
  1975年   126篇
  1974年   118篇
  1972年   140篇
排序方式: 共有10000条查询结果,搜索用时 70 毫秒
981.
This paper describes a study of local biogenic volatile organic compounds (BVOC) emissions from the Hong Kong Special Administrative Region (HKSAR). An improved land cover and emission factor database was developed to estimate Hong Kong emissions using MEGAN, a BVOC emission model developed by Guenther et al. (2006). Field surveys of plant species composition and laboratory measurements of emission factors were combined with other data to improve existing land cover and emission factor data. The BVOC emissions from Hong Kong were calculated for 12 consecutive years from 1995 to 2006. For the year 2006, the total annual BVOC emissions were determined to be 12,400 metric tons or 9.82 × 109 g C (BVOC carbon). Isoprene emission accounts for 72%, monoterpene emissions account for 8%, and other VOCs emissions account for the remaining 20%. As expected, seasonal variation results in a higher emission in the summer and a lower emission in the winter, with emission predominantly in day time. A high emission of isoprene occurs for regions, such as Lowest Forest-NT North, dominated by broadleaf trees. The spatial variation of total BVOC is similar to the isoprene spatial variation due to its high contribution. The year to year variability in emissions due to weather was small over the twelve-year period (?1.4%, 2006 to 1995 trendline), but an increasing trend in the annual variation due to an increase in forest land cover can be observed (+7%, 2006 to 1995 trendline). The results of this study demonstrate the importance of accurate land cover inputs for biogenic emission models and indicate that land cover change should be considered for these models.  相似文献   
982.
Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.  相似文献   
983.
The effect of foot traffic on indoor particle resuspension was evaluated by associating non-prescribed foot traffic with simultaneous size-resolved airborne particulate matter (PM) concentrations in a northern California hospital. Foot traffic and PM were measured every 15 min in a carpeted hallway over two 27-h periods. The PM concentration in the hallway was modeled based on the foot traffic intensity, including the previous PM concentration via an autocorrelation regression method based on the well-mixed box model. All 5 size ranges of PM, ranging from 0.75–1 μm to 5–7.5 μm, were highly correlated with foot traffic measurements for both monitoring periods (p < 0.001, R2 = 0.87–0.90). However, correlations during daytime hours were less significant than nighttime. Coefficients found via this autoregressive analysis can be interpreted to reveal (i) time-independent contributions of walking activities on PM levels for a specific location; and (ii) size-specific characteristics of the resuspended PM.  相似文献   
984.
In agricultural areas, the contamination of feedstuffs with molds and mycotoxins presents major environmental and health concerns. During cattle feeding, fungi and mycotoxins were monitored in corn silage, oilseed cakes and bioaerosols collected in Normandy. Most of the corn silages were found to be contaminated by deoxynivalenol (mean concentration: 1883 μg kg?1) while a few of oilseed cakes were contaminated by alternariol, fumonisin B1 or gliotoxin. In ambient bioaerosols, the values for fungi per cubic meter of air varied from 4.3 × 102 to 6.2 × 105 cfu m?3. Seasonal variations were observed with some species like Aspergillus fumigatus which significantly decreased between the 2 seasons (P = 0.0186) while the Penicillium roqueforti group significantly increased during the second season (P = 0.0156). In the personal bioaerosols, the values for fungi per cubic meter of air varied from 3.3 103 to 1.7 106 cfu m?3 and the number of A. fumigatus spores significantly decreased between the 2 seasons (P = 0.0488). Gliotoxin, an immunosuppressive mycotoxin, was quantified in 3 personal filters at 3.73 μg m?3, 1.09 μg m?3 and 2.97 μg m?3.  相似文献   
985.
986.
Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250–53 μm, and <53 μm)—corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions—and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.  相似文献   
987.
Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer (Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions.  相似文献   
988.
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.  相似文献   
989.
The soil fumigants 1,3-dichloropropene (1,3-D) and chloropicrin (CP) are often used for controlling soil-borne plant pathogens and parasitic nematodes before reestablishing new vineyards and orchards. To evaluate crop safety and environmental risks with the replant fumigation, four field experiments were performed over 2 yr to examine 1,3-D and CP lateral movement away from the treated fields. Shank injection with or without a virtually impermeable film (V1F) was used in two vineyard fumigation experiments, and spot drip application without tarp cover was used in two orchard experiments. Results showed that 1,3-D and CP gases moved laterally to 6 m from the treated fields when the fumigants were applied by shank injection. The maximum 1,3-D or CP soil gas concentration at 6 m was approximately 10 ng cm(-3) when the fumigated plot was not cover with a tarp. With VIF, the measured maximum concentration increased to approximately 100 ng cm(-3). In the spot drip application, maximum 1,3-D and CP gas concentrations reached approximately 100 ng cm(-3) but at 1.5 m radial distance from the point of fumigant injection.  相似文献   
990.
Commercial production and use of fullerene (C60) nanomaterials will inevitably lead to their release into the environment, where knowledge of C60 fate and transport is limited. In this study, a series of one-dimensional column experiments was conducted to assess the transport and retention of nanoscale fullerene aggregates (nC60) in water-saturated soils. Under the experimental conditions, complete retention of nC60 was observed in columns (2.5 cm inside diameter x 11 cm length) packed with Appling or Webster soil, which contain 0.75 and 3.33% organic carbon by weight, respectively. When the volume of aqueous nC60 suspension (approximately 4.5 mg L(-1)) applied to Appling soil was increased from 5 to 65 pore volumes, the travel distance increased from 3 to 8 cm, and the retention capacity approached a limiting value of 130 microg g(-1), although nC60 was not detected in the column effluent. The addition of 20 mg C L(-1) Suwannee River humic acid to the influent suspension increased the nC60 transport in Appling soil but did not resul in breakthrough. Attempts to simulate the experimental data using clean-bed filtration theory were not satisfactory, yielding retention profiles that failed to match observed data. Subsequent incorporation of a limiting retention capacity expression into the mathematical model resulted in accurate predictions of the measured nC60 retention profiles and transport behavior. The sizable retention capacities observed in this study suggest that transport of nC60 is limited in relatively fine-textured soils containing appreciable amounts of clay minerals and organic matter, with substantial accumulation of nC60 aggregates near the point of release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号