The degradative characteristics of butachlor in non-rhizosphere, wheat rhizosphere, and inoculated rhizosphere soils were measured. The rate constants for the degradation of butachlor in non-rhizosphere, rhizosphere, and inoculated rhizosphere soils were measured to be 0.0385, 0.0902, 0.1091 at 1 mg/kg, 0.0348, 0.0629, 0.2355 at 10 mg/kg, and 0.0299, 0.0386, 0.0642 at 100 mg/kg, respectively. The corresponding half-lives for butachlor in the soils were calculated to be 18.0, 7.7, 6.3 days at 1 mg/kg, 19.9, 11.0, 2.9 days at 10 mg/kg, and 23.2, 18.0, 10.8 days at 100 mg/kg, respectively. The experimental results show that the degradation of butachlor can be enhanced greatly in wheat rhizosphere, and especially in the rhizosphere inoculated with the bacterial community designated HD which is capable of degrading butachlor. It could be concluded that rhizosphere soil inoculated with microorganisms-degrading target herbicides is a useful pathway to achieve rapid degradation of the herbicides in soil. 相似文献
Concentrations of surface and sub-surface soil Cu, Cr, Pb and Zn in the Naples city urban area were measured in 1999. Contourmaps were constructed to describe the metals spatial distribution. In the most contaminated soil samples, metals were speciated by means of the European Commission sequential extraction procedure. At twelve sites, Cu, Pb and Zn levels in soil were compared with those from a 1974 sampling. Many surface soils from the urban area as well as from the eastern industrial district contained levels of Cu, Pb and Zn that largely exceeded the limits (120, 100 and 150 mg kg(-l) for Cu, Pb and Zn, respectively) set for soils of public, residential and private areas by the Italian Ministry of Environment. Chromium values were never above regulatory limits(120 mg kg(-1)). Copper apparently accumulates in soils contiguous to railway lines and tramway. Cu and Cr existed in soil mainly inorganic forms (-68%), whereas Pb occurs essentially as residual mineral phases (77%). The considerable presence of Zn in the soluble, exchangeable and carbonate bound fraction (23%) suggests this element has high potential bioavailability and leachability through the soil. Concentrations of Cu, Pb and Zn have greatly increased since the 1974 sampling, with higher accumulation in soils from roadside fields. 相似文献
A risk assessment of chemical constituents in rivers that receive untreated wastewater should take into account the adverse effects of increased biological oxygen demand (BOD), ammonia and reduced dissolved oxygen (DO). This concept was tested via a field study in the Balatuin River, The Philippines, where the influence of physical and chemical factors, including the consumer product chemical linear alkylbenezene sulfonate (LAS), to aquatic communities (algae, invertebrates, fish) was determined. Periphytic algae were found to be insensitive to high BOD (>10 mg/l) and ammonia (>0.01 mg unionized NH(3)/l), concentrations from organically enriched untreated wastewater discharges. However, taxa richness and abundance of macroinvertebrates were influenced greatly by the discharges. Where BOD and ammonia concentrations were elevated, the dominant taxa were oligochaete worms and chironominds. Fish and crustaceans (freshwater crabs and prawns) were found only in sites with the least BOD concentrations (furthest upstream and downstream). The maximum concentration of LAS (0.122 mg/l) was less than that expected to affect 5% of taxa (0.245 mg/l), whereas exceedences of DO and ammonia criteria were observed in several sites. The lack of recovery observed was attributed to influences of low DO, high ammonia and poor colonization from upstream and downstream reaches due to organically-enriched discharges 相似文献
Pest control agents, such as juvenile hormone analogues (JHA), have been developed to limit effects on non-target organisms that co-inhabit insect pest habitats. Rhithropanopeus harrisii, an estuarine xanthid crab, was used to observe the impacts of the JHA, fenoxycarb, on the pattern of complete larval development as well as survival of larvae and successful metamorphosis to first crab stage. Significant mortality occurred in the first of four zoeal stages (after 2-3 days of exposure) at the highest treatment of 240 microg fenoxycarb/l and in megalopae exposed to 48 microg fenoxycarb/l. The time required to metamorphose to the first crab stage was significantly increased for megalopae in all treatments 48 microg/l. This delay in development was sufficient to significantly prolong the entire developmental period from zoea to crabs. Unexposed larvae developed to crabs in an average of 16 days; larvae exposed to >/=48 microg/l required 19-20 days. Reduced survival and extended duration of developing larval stages in the life history of a benthic invertebrate may alter the population dynamics of these organisms in the estuary. 相似文献
Suspected estrogen modulators include industrial organic chemicals (i.e., xenoestrogens), and have been shown to consist of alkylphenols, bisphenols, biphenylols, and some hydroxy-substituted polycyclic aromatic hydrocarbons. The most prominent structural feature identified to be important for estrogenic activity is a polar group capable of donating hydrogen bonds (i.e., hydroxyl) on an aromatic system. The present study was undertaken to explore the estrogenic activity and acute toxicity of chemicals containing a weaker hydrogen bond donor group on aromatic systems, i.e., the amino substituent. There is a great deal of chemical similarity between aromatic amines (anilines) and aromatic alcohols (phenols). The chemicals chosen for the current study contained an amino-substituted benzene ring with hydrophobic constituents varying in size and shape. Thus, 37 substituted aromatic amines were assayed for estrogenic activity EC50 and acute toxicity LC50 using the Saccharomyces cerevisiae recombinant yeast assay. While the EC50 of 17-beta-estradiol occurs at the 10(-10) range, the aniline with the greatest activity had an EC50 of 10(-6) M. Thus, anilines, in general, are capable only of very weak estrogenic activity in this assay. A comparison of estrogenic potency between the present group of anilines and a set of previously tested analogous phenols indicated that anilines are consistently less estrogenic than phenols. A comparison of hazard indices (EC50/LC50) of these chemicals revealed that, for the vast majority of anilines, the EC50 and LC50 were in the same order of magnitude. More specifically, estrogenic activity of para-substituted alkylanilines increases with alkyl group size up to 5 carbons in length, after which the acute toxicity of the larger alkyl-substituents precluded the ability of the compound to induce the estrogenic response. 相似文献
Glyphosate mobility from terrestrial to aquatic environments has raised concerns about it. Utilizing soil’s inherent properties along with sorption properties of aged biochar, we hypothesized that selective application of biochar would be more effective in economic terms for glyphosate sorption on contrasting soils. To test this hypothesis, batch experiments and liquid scintillation counting for 14Okada, E.; Costa, J. L.; Bedmar, F. Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma2016, 263, 78–85.[Crossref], [Web of Science ®], [Google Scholar]C labeled glyphosate were used. The sorption behavior of glyphosate was examined in four contrasting Australian soil types (Oxisol, Vertisol, Entisol, and Inceptisol) amended with aged biochar to determine glyphosate concentrations by measuring 14Okada, E.; Costa, J. L.; Bedmar, F. Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma2016, 263, 78–85.[Crossref], [Web of Science ®], [Google Scholar]C activity using liquid scintillation counting. Freundlich parameters were calculated for soil-soil/biochar combinations. The pattern of glyphosate sorption was Oxisol?>?Vertisol?>?Entisol?>?Inceptisol. Oxisol adsorbed approximately five times more glyphosate compared with Inceptisol. Oxisol soil system adsorbed maximum amount of glyphosate principally due to the presence of iron-aluminum oxides exhibiting variable charges which got increased due to the presence of aged biochar. Considering all the soil/soil-biochar systems, Inceptisol soil system showed the least adsorption of glyphosate. A significant contribution of char was observed only in the Entisol soil system and the finding is valuable as char can be applied in Entisol soil systems to control glyphosate mobility. 相似文献
Fish may bioaccumulate contaminants from the aquatic environment and extend them to the food chain provoking risks to human health. This study evaluated the microbiological parameters of the pond´s water and trace elements concentrations in samples of water, sediment, feed and muscle of farmed Nile tilapia used for human consumption in southern Brazil. A total of 240 fish were collected from 12 tilapia farms. Sediment, tank water and dry ration used in the animals' diet were collected for analysis. Analysis were performed by Energy Dispersion X-ray Fluorescence (EDXRF), Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Induced Coupled Plasma Optical Emission Spectrometer (ICP-OES), and Atomic Absorption Spectrometer (AAS-VGA). In addition, the microbiological analysis of the water was carried out. The concentrations of Se, I, Fe, Cu and Zn in fish muscle were higher than the recommended by the Brazilian legislation, considering the advised daily intake for adults. The arsenic element had concentrations above the limit stipulated by the present Brazilian legislation, observed in all samples of muscle, sediment and tank water highlighting a possible environmental and fish contamination by the toxic element. Moreover, the arsenic concentration in the water presented a positive correlation (ρ?=?0.33) with arsenic in the muscle, suggesting that tilapia is a good environmental bioindicator, once they properly reflect the levels of arsenic in the water. It is suggested to perform an arsenic speciation for quantification of the inorganic form and accurate assessment of the degree of toxicity in the muscle samples and risks it can bring to human health. Regarding the other potentially toxic elements (Hg, Pb and Cd), and microbiological analysis of water it was verified that the consumption of the fish in question does not raise risks, since the values are within a quality benchmark established by law. The concentration of total and fecal coliforms in pond´s water in the facilities was in agreement with the microbiological indexes required by the legislation of CONAMA class II. Western region presented the lowest concentrations of fecal coliforms when compared to the other regions. There was no significant difference in the microbiological counts of total heterotrophic bacteria, Vibrio spp. and Pseudomonas spp. among the regions. 相似文献
The aim of our study is to determine microbial contamination, antibacterial and antioxidant activities of 14 pollen samples of Corylus avellana collected from different locations in Slovakia. Microbiological analysis was carried out in two steps: microbiological assays and studies of antibacterial activity of pollen extracts. The antimicrobial properties of pollen extracts were carried out with the disc-diffusion method. Methanol (70%), ethanol (70%) and distilled water were used for pollen extracts. Five strains of bacteria such as gram-negative (Salmonella enterica subsp. enterica CCM 3807, Escherichia coli CCM 2024, and Yersinia enterocolitica CCM 5671) and gram-positive (Staphylococcus aureus CCM 2461 and Bacillus thuringiensis CCM 19T) were tested. Antioxidant activity of pollen extracts was determined by the DPPH method. Bacterial analysis includes the determination of the total bacterial count ranged from 4.08 to 4.61 log CFU g?1, mesophilic aerobic bacteria ranged from 3.40 to 4.89 log CFU g?1, mesophilic anaerobic bacteria ranged from 3.20 to 4.52 log CFU g?1, coliform bacteria ranged from 3.30 to 4.55 log CFU g?1, yeasts and filamentous fungi ranged from 3.00 to 3.56 log CFU g?1. Microscopic filamentous fungi Aspergillus spp., Alternaria spp., Penicillium spp., Cladosporium spp., Rhizopus spp., and Paecylomyces spp. were isolated from hazelnut pollen. Yersinia enterocolitica was the most sensitive strain among ethanolic and methanolic pollen hazelnut extracts. Staphylococcus aureus was the most sensitive strain against aqueous hazelnut pollen extracts. We determined the following sensitivity against ethanol pollen extracts respectively: Yersinia enterocolitica?>?Salmonella enterica?>?Staphylococcus aureus?>?Bacillus thuringiensis?>?Escherichia coli. Methanol pollen extracts had shown following sensitivity: Yersinia enterocolitica?>?Salmonella enterica?>?Escherichia coli?>?Staphylococcus aureus?>?Bacillus thuringiensis. Aqueous extracts had shown the following sensitivity: Staphylococcus aureus?>?Salmonella enterica?>?Escherichia coli?>?Bacillus thuringiensis?>?Yersinia enterocolitica. Hazelnut pollen extracts have over 82% antioxidant capacity in samples from non-urban zones. An elevated level of antioxidant potential in the pollen is determined by its biological properties conditioned by biologically active substances. DPPH method allowed characterizing pollen as a source of antioxidants. 相似文献
Dhaka, the capital of Bangladesh, is among the most polluted cities in the world. This research evaluates seasonal patterns, day-of-week patterns, spatial gradients, and trends in PM2.5 (<2.5 µm in aerodynamic diameter), PM10 (<10 µm in aerodynamic diameter), and gaseous pollutants concentrations (SO2, NO2, CO, and O3) monitored in Dhaka from 2013 to 2017. It expands on past work by considering multiple monitoring sites and air pollutants. Except for ozone, the average concentrations of these pollutants showed strong seasonal variation, with maximum during winter and minimum during monsoon, with the pollution concentration of PM2.5 and PM10 being roughly five- to sixfold higher during winter versus monsoon. Our comparisons of the pollutant concentrations with Bangladesh NAAQS and U.S. NAAQS limits analysis indicate particulate matter (PM2.5 and PM10) as the air pollutants of greatest concern, as they frequently exceeded the Bangladesh NAAQS and U.S. NAAQS, especially during nonmonsoon time. In contrast, gaseous pollutants reported far fewer exceedances throughout the study period. During the study period, the highest number of exceedances of NAAQS limits in Dhaka City (Darus-Salam site) were found for PM2.5 (72% of total study days), followed by PM10 (40% of total study days), O3 (1.7% of total study days), SO2 (0.38% of total study days), and CO (0.25% of total study days). The trend analyses results showed statistically significant positive slopes over time for SO2 (5.6 ppb yr?1, 95% confidence interval [CI]: 0.7, 10.5) and CO (0.32 ppm yr?1, 95% CI: 0.01, 0.56), which suggest increase in brick kilns operation and high-sulfur diesel use. Though statistically nonsignificant annual decreasing slopes for PM2.5 (?4.6 µg/m3 yr?1, 95% CI: ?12.7, 3.6) and PM10 (?2.7 µg/m3 yr?1, 95% CI: ?7.9, 2.5) were observed during this study period, the PM2.5 concentration is still too high (~ 82.0 µg/m3) and can cause severe impact on human health.
Implications: This study revealed key insights into air quality challenges across Dhaka, Bangladesh, indicating particulate matter (PM) as Dhaka’s most serious air pollutant threat to human health. The results of these analyses indicate that there is a need for immediate further investigations, and action based on those investigations, including the conduct local epidemiological PM exposure-human health effects studies for this city, in order to determine the most public health effective interventions. 相似文献
Pyrolysis of waste materials to produce biochar is an excellent and suitable alternative supporting a circular bio-based economy. One of the properties attributed to biochar is the capacity for sorbing organic contaminants, which is determined by its composition and physicochemical characteristics. In this study, the capacity of waste-derived biochar to retain volatile fuel organic compounds (benzene, toluene, ethylbenzene and xylene (BTEX) and fuel oxygenates (FO)) from artificially contaminated water was assessed using batch-based sorption experiments. Additionally, the sorption isotherms were established. The results showed significant differences between BTEX and FO sorption on biochar, being the most hydrophobic and non-polar contaminants those showing the highest retention. Furthermore, the sorption process reflected a multilayer behaviour and a relatively high sorption capacity of the biochar materials. Langmuir and Freundlich models were adequate to describe the experimental results and to detect general differences in the sorption behaviour of volatile fuel organic compounds. It was also observed that the feedstock material and biochar pyrolysis conditions had a significant influence in the sorption process. The highest sorption capacity was found in biochars produced at high temperature (>?400 °C) and thus rich in aromatic C, such as eucalyptus and corn cob biochars. Overall, waste-derived biochar offers a viable alternative to be used in the remediation of volatile fuel organic compounds from water due to its high sorption capacity.