首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1798篇
  免费   56篇
  国内免费   21篇
安全科学   88篇
废物处理   70篇
环保管理   407篇
综合类   177篇
基础理论   508篇
环境理论   5篇
污染及防治   418篇
评价与监测   123篇
社会与环境   54篇
灾害及防治   25篇
  2023年   19篇
  2022年   36篇
  2021年   48篇
  2020年   24篇
  2019年   42篇
  2018年   54篇
  2017年   59篇
  2016年   78篇
  2015年   49篇
  2014年   66篇
  2013年   151篇
  2012年   85篇
  2011年   128篇
  2010年   79篇
  2009年   94篇
  2008年   105篇
  2007年   97篇
  2006年   105篇
  2005年   54篇
  2004年   50篇
  2003年   59篇
  2002年   45篇
  2001年   26篇
  2000年   44篇
  1999年   20篇
  1998年   19篇
  1997年   9篇
  1996年   21篇
  1995年   18篇
  1994年   20篇
  1993年   11篇
  1992年   11篇
  1991年   9篇
  1990年   8篇
  1989年   12篇
  1988年   11篇
  1987年   10篇
  1986年   11篇
  1985年   9篇
  1984年   5篇
  1983年   10篇
  1982年   13篇
  1981年   14篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1975年   4篇
  1969年   4篇
  1958年   2篇
排序方式: 共有1875条查询结果,搜索用时 15 毫秒
71.
Enteric viruses monitoring in surface waters requires the concentration of viruses before detection assays. The aim of this study was to evaluate different methods in terms of recovery efficiencies of bacteriophage PP7 of Pseudomonas aeruginosa, measured by real-time PCR, using it as a viral control process in water analysis. Different nucleic acid extraction methods (silica–guanidinium thiocyanate, a commercial kit (Qiagen Viral RNA Kit) and phenol–chloroform with alcohol precipitation) exhibited very low recovery efficiencies (0.08–4.18 %), being the most efficient the commercial kit used for subsequent experiments. To evaluate the efficiency of three concentration methods, PBS (as model for clean water) and water samples from rivers were seeded to reach high (HC, 106 pfu ml?1) and low concentrations (LC, 104 pfu ml?1) of PP7. Tangential ultrafiltration proved to be more efficient (50.36?±?12.91, 17.21?±?9.22 and 12.58?±?2.35 % for HC in PBS and two river samples, respectively) than adsorption–elution with negatively charged membranes (1.00?±?1.34, 2.79?±?2.62 and 0.05?±?0.08 % for HC in PBS and two river samples, respectively) and polyethylene glycol precipitation (15.95?±?7.43, 4.01?±?1.12 and 3.91?±?0.54 %, for HC in PBS and two river samples, respectively), being 3.2–50.4 times more efficient than the others for PBS and 2.7–252 times for river samples. Efficiencies also depended on the initial virus concentration and aqueous matrixes composition. In consequence, the incorporation of an internal standard like PP7 along the process is useful as a control of the water concentration procedure, the nucleic acid extraction, the presence of inhibitors and the variability of the recovery among replicas, and for the calculation of the sample limit of detection. Thus, the use of a process control, as presented here, is crucial for the accurate quantification of viral contamination.  相似文献   
72.
Oyster populations in south Florida estuaries have declined in part through altered salinity driven by anthropogenic changes in freshwater inputs. In particular, the St. Lucie Estuary (SLE) in southeastern Florida has suffered widespread loss of oyster habitat. With efforts underway to improve water quality and oyster habitat in the SLE, the goal of this study was to develop a model to assess ecosystem level impacts of oyster restoration. Phytoplankton and oyster biomass modeling targets were established from observational data collected from 2005 to 2009. Modeled oyster biomass production and filtration fluctuated with temperature, salinity, and total suspended solids from a combination of observational and predicted input functions in 10-year simulations (1998–2007). Model estimates of oyster biomass fluctuated with salinity from near zero after extreme freshwater discharge in 2002–2003 and 2004–2005 to maximum values near 150.0 and 200.0 g?C?m?2 in spring 1999 and fall 2006. There was potential for algal blooms as turnover time for the phytoplankton standing stock (15.6 days) was faster than water mass turnover (21.0 days). While >1,000 days were required for 50 ha of oyster habitat to filter the entire volume of the estuarine segment, filter time reduced to <20 days with an estimated fivefold increase in net consumption of phytoplankton if the oyster habitat was increased to 300 ha. Re-establishment of biologically desirable salinity envelopes would stabilize oyster survival allowing the possibility for successful habitat restoration to benefit water quality and faunal attributes of the St. Lucie Estuary.  相似文献   
73.
74.
The Chesapeake Bay benthic index of biotic integrity (B-IBI) was developed to assess benthic community health and environmental quality in Chesapeake Bay. The B-IBI provides Chesapeake Bay monitoring programs with a uniform tool with which to characterize bay-wide benthic community condition and assess the health of the Bay. A probability-based design permits unbiased annual estimates of areal degradation within the Chesapeake Bay and its tributaries with quantifiable precision. However, of greatest interest to managers is the identification of problem areas most in need of restoration. Here we apply the B-IBI to benthic data collected in the Bay since 1994 to assess benthic community degradation by Chesapeake Bay Program segment and water depth. We used a new B-IBI classification system that improves the reliability of the estimates of degradation. Estimates were produced for 67 Chesapeake Bay Program segments. Greatest degradation was found in areas that are known to experience hypoxia or show toxic contamination, such as the mesohaline portion of the Potomac River, the Patapsco River, and the Maryland mainstem. Logistic regression models revealed increased probability of degraded benthos with depth for the lower Potomac River, Patapsco River, Nanticoke River, lower York River, and the Maryland mainstem. Our assessment of degradation by segment and water depth provided greater resolution of relative condition than previously available, and helped define the extent of degradation in Chesapeake Bay.  相似文献   
75.
The minerals industry interacts with water in many different ways that can affect the environment and communities. In the context of emerging debates about the status of access to water as a distinct human right and the mining industry’s engagement with human rights discourses, this article highlights points of disconnection between technical, scientific and engineering-based approaches to water management on the one hand and human rights perspectives on the other. We argue that greater understanding and emphasis on the intersecting nature of water and human rights is important from a sustainable development perspective. Better connections will increase the likelihood that mining companies will respect human rights, avoid or mitigate adverse social and environmental risks that occur through their interaction with water and collaboratively identify water-related development opportunities. Discursive, organisational, political and conceptual barriers of these various disconnects are considered and strategies for strengthening points of connection provided.  相似文献   
76.
There is extensive research on employee attitudes regarding employers and unions, but these studies have underemphasized social and affective forces. Most studies also examine attitudes toward either the union or the employer without considering how these attitudes might relate to one another. The present study of faculty (N = 306) at a large public research university demonstrated that perceptions of union support were positively related to union participation and perceptions of administration support were negatively related to union participation. Subjective norms and general union attitudes were related to perceptions of union support, and subjective norms were related to perceived organizational support. Taken together, an individual's participation in a union recognition effort depends not only on union instrumentality, but also upon social relationships with the union and administration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
77.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   
78.
This article reports the computational and experimental results of the thermal decomposition of permethrin, a potential source of dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). We have performed a quantum chemical analysis by applying density functional theory to obtain the decomposition pathways of permethrin and the formation mechanism of dibenzofuran. We have conducted the pyrolysis experiments in a tubular reactor and identified the pyrolysis products to demonstrate the agreement between the experimental measurements and quantum chemical calculations. The initiation of the decomposition of permethrin involves principally the aromatisation of permethrin into 3-phenoxyphenylacetic acid, 2-methylphenyl ester (J) and concomitant loss of 2HCl. This rearrangement is followed by the rupture of the O–CH2 linkage in J, with a rate constant derived from the quantum chemical results of 1 × 1015 exp(−68 kcal/mol/RT) s−1 for temperatures between 700 and 1300 K. This is confirmed by finding that the rate constant for unimolecular rearrangement of permethrin into J is 1.2 × 1012 exp(−53 kcal/mol/RT) s−1 over the same range of temperatures and exceeds the direct fission rate constant at all temperatures up to 850 ± 120 °C as well as by the experimental detection of J prior to the detection of the initial products incorporating diphenyl ether, 1-methyl-3-phenoxybenzene, 3-phenoxybenzaldehyde and 1-chloromethyl-3-phenoxybenzene. As the temperature increases, we observe a rise in secondary products formed directly or indirectly (via phenol/phenoxy) including aromatics (naphthalene), biphenyls (biphenyl, 4-methyl-1,1′-biphenyl) and dibenzofuran (DF). In particular, we discover by means of quantum chemistry a direct route from 2-phenoxyphenoxy to naphthalene. We detect no polychlorinated dibenzo-p-dioxins and dibenzofurans. Unlike the case of oxidative pyrolysis [Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M., 2007b. Formation of dioxins in fires of arsenic-free treated wood: Role of organic preservatives. Environ. Sci. Technol. 41, 6425–6432] where significant yields of both PCDD and PCDF were obtained, under non-oxidative conditions the thermal decomposition of permethrin does not form appreciable amounts of PCDD or PCDF and the presence of oxygen (and/or a sizable radical pool) appears necessary for the formation of dibenzo-p-dioxin itself or PCDD/F from phenol/phenoxy.  相似文献   
79.
The impact of water saturation level (oxidizing-reducing environment) on As and metal solubility in chromium, copper, arsenic (CCA)-contaminated soil amended with Fe-containing materials was studied. The soil was mixed with 0.1 and 1 wt% of iron grit (Fe(0)) and 1, 7 and 15 wt% of oxygen scarfing granulate (OSG, a by-product of steel processing). Solubility of As and metals was evaluated by a batch leaching test and analysis of soil pore water. Soil saturation with water greatly increased As solubility in the untreated as well as in the Fe-amended soil. This was related to the reductive dissolution of Fe oxides and increased concentration of As(III) species. Fe amendments showed As reducing capacity under both oxic and anoxic conditions. The cytotoxicity of the soil pore water correlated with the concentration of As(III). The Fe-treatments as well as water saturation of soil were less significant for the solubility of Cu, Cr and Zn than for As. The batch leaching test used for waste characterization substantially underestimated As solubility that could occur under water-saturated (anaerobic) conditions. In the case of soil landfilling, other techniques than Fe-stabilization of As containing soil should be considered.  相似文献   
80.
We use a global chemical transport model (GEOS-Chem) with 1° × 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-hour average ozone concentrations in US surface air. Simulations for summer 2001 indicate mean North American and US background concentrations of 26 ± 8 ppb and 30 ± 8 ppb, as obtained by eliminating anthropogenic emissions in North America vs. in the US only. The US background never exceeds 60 ppb in the model. The Canadian and Mexican pollution enhancement averages 3 ± 4 ppb in the US in summer but can be occasionally much higher in downwind regions of the northeast and southwest, peaking at 33 ppb in upstate New York (on a day with 75 ppb total ozone) and 18 ppb in southern California (on a day with 68 ppb total ozone). The model is successful in reproducing the observed variability of ozone in these regions, including the occurrence and magnitude of high-ozone episodes influenced by transboundary pollution. We find that exceedances of the 75 ppb US air quality standard in eastern Michigan, western New York, New Jersey, and southern California are often associated with Canadian and Mexican pollution enhancements in excess of 10 ppb. Sensitivity simulations with 2020 emission projections suggest that Canadian pollution influence in the Northeast US will become comparable in magnitude to that from domestic power plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号