首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   0篇
  国内免费   6篇
安全科学   14篇
废物处理   25篇
环保管理   24篇
综合类   33篇
基础理论   58篇
环境理论   1篇
污染及防治   112篇
评价与监测   37篇
社会与环境   15篇
  2023年   18篇
  2022年   31篇
  2021年   23篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   10篇
  2016年   9篇
  2015年   4篇
  2014年   19篇
  2013年   39篇
  2012年   12篇
  2011年   18篇
  2010年   6篇
  2009年   13篇
  2008年   10篇
  2007年   13篇
  2006年   6篇
  2005年   12篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1979年   3篇
  1975年   1篇
  1965年   2篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1955年   2篇
  1929年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
251.
As with other construction materials, coal fly ash contains trace metals that can leach into the natural environment. As part of a broader effort to encourage appropriate coal combustion product use in infrastructure applications (e.g., road construction, stabilization, and structural fill), this study evaluated traditional and low‐cost adsorbent alternatives for their capacity to attenuate trace metals. Batch sorption tests were used as a preliminary screen for a wide variety of low cost (e.g., steel byproducts, rubber dust, and compost) and innovative materials (e.g., kudzu, biofilm, and pond weed) as well as conventional materials (activated carbon, alumina, and zeolites). The removal rates were demonstrated in this study by observing the calculated distribution coefficient (Kd) which were determined using a program called MATLAB. Limestone and steel byproducts were found to be particularly effective with large Kd values of 15,740, 1,520, and 540 L kg?1 for cadmium, chromium, and selenium and, for ladle refractory and mill scale, Kd values of 3,910, 670, and 1,760 L kg?1 were observed. Among the three metals tested for this study, it was observed that most low cost and innovative materials removed cadmium quite efficiently; however, the removal of selenium and chromium depended on the substrate and prevailing pH. In general, these results suggest that alternative materials may have relevance in niche applications where leaching is a concern that can be addressed through enhanced attenuation capacity via blending or layering of adsorbents.  相似文献   
252.
253.
254.
255.
The promulgation of odor control rules, increasing public concerns, and U.S. Environmental Protection Agency (EPA) air regulations in nonattainment zones necessitates the remediation of a wide range of volatile organic compounds (VOCs) generated by the rendering industry. Currently, wet scrubbers with oxidizing chemicals are used to treat VOCs; however, little information is available on scrubber efficiency for many of the VOCs generated within the rendering process. Portable gas chromatography/mass spectrometry (GC/MS) units were used to rapidly identify key VOCs on-site in process streams at two poultry byproduct rendering plants. On-site analysis was found to be important, given the significant reduction in peak areas if samples were held for 24 hr before analysis. Major compounds consistently identified in the emissions from the plant included dimethyl disulfide, methanethiol, octane, hexanal, 2-methylbutanal, and 3-methylbutanal. The two branched aldehydes, 2-methylbutanal and 3-methylbutanal, were by far the most consistent, appearing in every sample and typically the largest fraction of the VOC mixture. A chlorinated hydrocarbon, methanesulfonyl chloride, was identified in the outlet of a high-intensity wet scrubber, and several VOCs and chlorinated compounds were identified in the scrubbing solution, but not on a consistent basis. Total VOC concentrations in noncondensable gas streams ranged from 4 to 91 ppmv. At the two plants, the odor-causing compound methanethiol ranged from 25 to 33% and 9.6% of the total VOCs (v/v). In one plant, wet scrubber analysis using chlorine dioxide (ClO2) as the oxidizing agent indicated that close to 100% of the methanethiol was removed from the gas phase, but removal efficiencies ranged from 20 to 80% for the aldehydes and hydrocarbons and from 23 to 64% for total VOCs. In the second plant, conversion efficiencies were much lower in a packed-bed wet scrubber, with a measurable removal of only dimethyl sulfide (20-100%).  相似文献   
256.
Changes in the trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling in the United States. In response to these challenges, new and innovative approaches to automobile recycling are being developed. This paper presents the findings of a recent study to examine the impacts of these changes on the life cycle energy consumption of automobiles and on the quantity of waste that must be disposed of. Given the recycle status quo, trends in material composition and the viability of recycling the non-metallic components of the typical automobile are of secondary importance when compared to the energy consumed during the life of the automobile. The energy savings resulting from small changes in the fuel efficiency of a vehicle overshadow potential energy losses associated with the adoption of new and possibly non-recyclable materials. Under status quo conditions, the life cycle energy consumed by the typical automobile is projected to decrease from 599 million Btus in 1992 to 565 million Btus in 2000. Energy consumed during the manufacture of the typical car will increase from about 120 to 140 million Btus between 1992 and 2000, while energy used during vehicle operation will decrease from 520 to 480 million Btus. This study projects that energy saved at the recycle step will increase from 41 million Btus in 1992 to 55 million Btus in 2000. This study also investigated the energy impacts of several potential changes to the recycle status quo, including the adoption of technologies to retrieve the heat value of ASR by incineration and the recycle of some or all thermoplastics in the typical automobile. The study estimates that under optimistic conditions —i.e., the recycling of all thermoplastics and the incineration with heat recovery of all remaining ASR —about 8 million Btus could be saved per automobile —i.e., an increase from about 55 to 63 million Btus. In the more realistic scenario —i.e., the recycling of easy-to-remove thermoplastic components (bumper covers and dash-boards) —the potential energy savings are about 1 million Btus per vehicle. It is estimated that the annual quantity of ASR in the United States could be reduced from about 5 billion pounds to as little as 1 billion pounds of ash if all ASR is incinerated. Alternatively, ASR quantity could be reduced to about 4 billion pounds if all thermoplastics in automobiles are recycled. However, in the case of recycling only thermoplastic bumper covers and dashboards, the quantity of ASR would be reduced by only 0.2 billion pounds. A significant reduction or increase in the size of the ASR waste stream will not in itself have a large impact on the solid waste stream in the United States.  相似文献   
257.
ABSTRACT

Microplastics are emerging environmental pollutants that have gained tremendous scientific interest in recent years. These micropollutants are omnipresent both in the terrestrial and aquatic environments posing a deleterious threat to the ecosystem and biodiversity. So, it is important to develop a deep understanding of the environmental fate and potential adverse impacts of microplastics on the aquatic and terrestrial environments. By critically reviewing the previously published scientific literature, the present synthesis briefly outlines the characteristics, occurrence and potential toxic effects of microplastics on terrestrial and aquatic biota. The article also focuses on some innovative approaches for sustainable remediation of macroplastics as well as microplastics. Since the concept of microplastics pollution has yet in its infancy in Bangladesh, this synthesis provides an overview of the current scenario of microplastics pollution and some future research recommendations in the context of Bangladesh which might be helpful to the novice researchers of this field.  相似文献   
258.
Journal of Material Cycles and Waste Management - Enormous generation of construction and demolition (C&D) waste along with municipal solid waste (MSW) is required to managed properly for...  相似文献   
259.
The present research deals with the quantification of health hazard in a fluorosis prone area from east-coast of India. The average health hazard quotients are 2.09, 2.42, 1.79, and 1.69 for infants, children, male, and female adults, respectively. These values are more than the tolerance limit (1) in 92% groundwater samples and 96% of the study area. The children are more vulnerable to fluorosis than infants and adults. Ca2+/ Na+ versus HCO3/Na+ and Ca2+/Na+ versus Mg2+/Na+ plots suggest silicate weathering as the prime factor while linear relationship of TDS versus NO3 + (Cl/HCO3) supports the anthropogenic input of F to the aquifer system. The study suggests that the F ions are chiefly derived from fluorite, apatite, biotite, and hornblende present in the granitic basement under alkaline environment. The secondary sources are domestic and industrial sewage as well as return flow from irrigation with ingredients of phosphate fertilizers. The adverse effects of fluorosis can be minimized by mass awareness programmes, alternative source of potable drinking water, defluoridation techniques, dilution of high F concentration in groundwater, and minimizing the use of phosphate fertilizers.  相似文献   
260.

Cu(II) adsorption in continuous column using green adsorbents like peanut and almond shell was investigated. Fourier transform infrared (FTIR) spectroscopy, Brunaer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), and Point of Zero charge (pHpzc) determination have been used for characterization of the adsorbents. Experiments were conducted at various operating conditions to calculate the adsorption capacity of the adsorbents. Adsorption studies signify that both the adsorbents have good adsorptive capacity for Cu(II) ion. Equilibrium of adsorption was described using Langmuir isotherm and the highest qmax value for both the adsorbent were obtained at an operating condition of 20 ml/min flow rate, 15 mg/L influent Cu(II) concentration, and 7 cm bed depth. Regeneration of both the adsorbents suggests that these adsorbents can be used several times for Cu(II) removal. Seven different kinetic models were tested among which the modified dose response model was fitted well for peanut shell and the Thomas model was fitted well for almond shell. These fitted models were further used for scale-up design. Regeneration studies show that peanut shell and almond shell are useful up to the fifth adsorption cycle. Application of these adsorbents with industrial effluent was also reported. This study reveals that peanut and almond shells can be used for Cu(II) removal for industrial wastewater.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号