首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   0篇
  国内免费   6篇
安全科学   14篇
废物处理   25篇
环保管理   24篇
综合类   33篇
基础理论   59篇
环境理论   1篇
污染及防治   111篇
评价与监测   37篇
社会与环境   15篇
  2023年   17篇
  2022年   31篇
  2021年   23篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   10篇
  2016年   9篇
  2015年   4篇
  2014年   19篇
  2013年   40篇
  2012年   12篇
  2011年   18篇
  2010年   6篇
  2009年   13篇
  2008年   10篇
  2007年   13篇
  2006年   6篇
  2005年   12篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1979年   3篇
  1975年   1篇
  1965年   2篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1955年   2篇
  1929年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
251.
ABSTRACT

Microplastics are emerging environmental pollutants that have gained tremendous scientific interest in recent years. These micropollutants are omnipresent both in the terrestrial and aquatic environments posing a deleterious threat to the ecosystem and biodiversity. So, it is important to develop a deep understanding of the environmental fate and potential adverse impacts of microplastics on the aquatic and terrestrial environments. By critically reviewing the previously published scientific literature, the present synthesis briefly outlines the characteristics, occurrence and potential toxic effects of microplastics on terrestrial and aquatic biota. The article also focuses on some innovative approaches for sustainable remediation of macroplastics as well as microplastics. Since the concept of microplastics pollution has yet in its infancy in Bangladesh, this synthesis provides an overview of the current scenario of microplastics pollution and some future research recommendations in the context of Bangladesh which might be helpful to the novice researchers of this field.  相似文献   
252.
Worldwide solid waste generation is nearly 1.3 billion tonnes/year, whereas in India 62 million tonnes of solid waste is generated per year by 377 million urban people. The increasing amount of solid waste in India, nearly 50% of which is organic matter, is the major concern for treatment and waste management. Several technologies are already in practice for the treatment of organic fraction of municipal solid waste (OFMSW) in India. It is important to assess the sustainability of these processes. In this study, the existing OFMSW technologies in India were examined. Case-study approach was taken for this purpose along with some published secondary reports. It was found that the selection of technology quite depends on the composition of the OFMSW. Food waste rich fractions are recommended for biomethanation, whereas the fractions rich in market waste and household waste are suitable for composting. Fractions rich in lignin and lignocellulosic materials are suitable for pyrolysis and gasification, whereas the rejects are to be sent for RDF preparation. Based on the findings, a sustainable framework has also been proposed, implementation of which may result in better waste management.  相似文献   
253.
Efficient nutrient removal in decentralized wastewater treatment systems is a challenging task. To improve the removal of organic matter and nitrogen from wastewater, two types of bioreactors using membrane-aerated biofilm reactor (MABR) and microbial fuel cell (MFC) techniques were evaluated. During more than 250 days of continuous-flow reactor operation, both reactors showed consistently high chemical oxygen demand removal (>86%). At an influent ammonium-nitrogen (NH4(+)-N) concentration of 30 mg N/L, the average effluent NH4(+)-N concentrations were 6.2 and 0.5 mg N/L for the MABR and MFC reactor, respectively, while the effluent nitrate-nitrogen (NO3(-)-N) concentrations were 5.4 mg/ L in the MABR and 19.2 mg/L in the MFC-based reactor. The overall total inorganic nitrogen removal efficiencies were 64% and 36% for the MABR and MFC reactor, respectively. At the measured dissolved oxygen concentrations of 5.2 and 0.23 mg/L in the aerobic/anoxic zone of the MFC and MABR, respectively, a specific oxygen uptake rate of 0.1 g O2/g VSS-d, resulting from ammonia oxidation, was detected in the settled sludge of the MFC, while no nitrifying activity of the sludge from the MABR was detected. Molecular microbial analysis demonstrated a link between the bacterial community structure and nitrifying activity. The relatively high abundance of Nitrosomonas europaea was associated with its detectable nitrification activity in the settled sludge of the MFC. The results suggest that MABR and MFC techniques have the potential to improve organic and nitrogen removal in decentralized wastewater systems.  相似文献   
254.
Das KC  Xia K 《Chemosphere》2008,70(5):761-768
4-Nonylphenol, a degradation intermediate of commercial surfactant and known endocrine disruptor, has been frequently detected at levels up to several thousand microgl(-1) in surface waters and up to several hundred mgkg(-1) (dry weight) in soil and sediment samples. Large quantities of 4-NP can be quickly sorbed by the organic rich solid phase during wastewater treatment and are concentrated in biosolids, a possible major source for 4-NP in the environment. Microbial transformation in culture studies followed different mechanisms for different 4-NP isomers, which have different estrogenic activity. Composting is a process of solid matrix transformation where biological activity is enhanced by process control. This approach has been used successfully in remediation of contaminated soils and sludges. In this study, the transformation kinetics of 4-NP and its isomers were characterized during biosolids composting. Five distinctive 4-NP isomer groups with structures relative to alpha- and beta-carbons of the alkyl chain were identified in biosolids. Composting biosolids mixed with wood shaving at a dry weight percentage ratio of 43:57 (C:N ratio of 65:1) removed 80% of the total 4-NP within two weeks. At this biosolids/wood shaving ratio (B:WS), the transformation of total 4-NP and its isomers followed second-order kinetic. Higher B:WS ratios yielded significantly slower 4-NP transformation which followed first-order kinetic. Isomers with alpha-methyl-alpha-propyl structure transformed significantly slower than those with less branched tertiary alpha-carbon and those with secondary alpha-carbon, suggesting isomer-specific degradation of 4-NP during biosolids composting.  相似文献   
255.
256.
This study presents surface ozone (O3) and carbon monoxide (CO) measurements conducted at Bhubaneswar from December 2010 to November 2012 and attempts for the very first time a health risk assessment of the atmospheric trace gases. Seasonal variation in average 24 h O3 and CO shows a distinct winter (December to February) maxima of 38.98?±?9.32 and 604.51?±?145.91 ppbv, respectively. O3 and CO characteristics and their distribution were studied in the form of seasonal/diurnal variations, air flow patterns, inversion conditions, and meteorological parameters. The observed winter high is likely due to higher regional emissions, the presence of a shallower boundary layer, and long-range transport of pollutants from the Indo-Gangetic Plain (IGP). Large differences between daytime and nighttime O3 values during winter compared to other seasons suggest that photochemistry is much more active on this site during winter. O3 and CO observations are classified in continental and marine air masses, and continental influence is estimated to increase O3 and CO by up to 20 and 120 ppbv, respectively. Correlation studies between O3 and CO in various seasons indicated the role of CO as one of the O3 precursors. Health risk estimates predict 48 cases of total premature mortality in adults due to ambient tropospheric O3 during the study period. Comparatively low CO concentrations at the site do not lead to any health effects even during winter. This study highlights the possible health risks associated with O3 and CO pollution in Bhubaneswar, but these results are derived from point measurements and should be complemented either with regional scale observations or chemical transport models for use in design of mitigation policies.  相似文献   
257.
In this study, rice husk was modified with NaOH and used as adsorbent for dynamic adsorption of methylene blue (MB) from aqueous solutions. Continuous removal of MB from aqueous solutions was studied in a laboratory scale fixed-bed column packed with NaOH-modified rice husk (NMRH). Effect of different flow rates and bed heights on the column breakthrough performance was investigated. In order to determine the most suitable model for describing the adsorption kinetics of MB in the fixed-bed column system, the bed depth service time (BDST) model as well as the Thomas model was fitted to the experimental data. An artificial neural network (ANN)-based model was also developed for describing the dynamic dye adsorption process. An extensive error analysis was carried out between experimental data and data predicted by the models by using the following error functions: correlation coefficient (R 2), average relative error, sum of the absolute error and Chi-square statistic test (χ 2). Results show that with increasing bed height and decreasing flow rate, the breakthrough time was delayed. All the error functions yielded minimum values for the ANN model than the traditional models (BDST and Thomas), suggesting that the ANN model is the most suitable model to describe the fixed-bed adsorption of MB by NMRH. It is also more rational and reliable to interpret dynamic dye adsorption data through a process of ANN architecture.  相似文献   
258.
Wetland sediments are generally considered as a sink for metals and, in the anoxic zone, may contain very high concentrations of heavy metals in reduced state. A comprehensive study was carried out to compare the differences of total, environmentally available (Env-Av), HOAC, EDTA and DTPA available heavy metal fraction in tailing of the marshy area of a copper tailing pond and the dry tailing. The average concentrations of all the seven metals in the wetland tailing were found higher than dry tailing. Regarding pH, organic carbon, availailable N, P and K also found higher in marshy wetland tailing compare to the dry tailing. This information is needed in order to understand wetland system and to assure that wetlands do not themselves eventually become sources of metal contamination to surrounding areas. But as levels of pollutants increases, the ability of a wetland system to incorporate waste can be impaired and the wetland can become a source of toxicity.  相似文献   
259.
An experiment was conducted under laboratory conditions to investigate the effect of two systemic herbicides viz., pendimethalin and quizalofop, at their recommended field rates (1.0 kg and 50 g active ingredient ha − 1, respectively) on the growth and activities of non-symbiotic N2-fixing bacteria in relation to mineralization and availability of nitrogen in a Typic Haplustept soil. Both the herbicides, either singly or in a combination, stimulated the growth and activities of N2-fixing bacteria resulting in higher mineralization and availability of nitrogen in soil. The single application of quizalofop increased the proliferation of aerobic non-symbiotic N2-fixing bacteria to the highest extent while that of pendimethalin exerted maximum stimulation to their N2-fixing capacity in soil. Both the herbicides, either alone or in a combination, did not have any significant difference in the stimulation of total nitrogen content and availability of exchangeable NH4  +  while the solubility of NO3  −  was highly manifested when the herbicides were applied separately in soil.  相似文献   
260.
The tannery effluents contain a high concentration of chromium (Cr). It drastically reduces the crop yield when used for irrigation purpose. A huge volume of tannery effluents is available as irrigation for crop production. It is negatively affecting germination as well as yield of the crop. The wheat seeds were exposed to five different concentrations of Cr (0, 20, 40, 80, and 100 ppm). In Petri plates, 100 seeds were placed and the germination percent was recorded after 72 hour (h). Root elongation and coleoptile growth were measured at 72, 120, 168, and 240 h. Results showed that the germination percent of the test crop decreased with increasing Cr levels. It decreased by 6, 14, 30, and 37 % under the Cr concentration of 20, 40, 80, and 100 ppm, respectively. The root elongation was more sensitive than the coleoptile growth. The negative correlation was found between Cr levels and root elongation as well as coleoptile growth. These growth parameters were significantly affected up to 80 ppm of Cr level. The wheat growers using tannery effluent as irrigation should be well treated prior to application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号