首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4910篇
  免费   139篇
  国内免费   61篇
安全科学   270篇
废物处理   168篇
环保管理   1245篇
综合类   533篇
基础理论   1349篇
环境理论   8篇
污染及防治   993篇
评价与监测   317篇
社会与环境   172篇
灾害及防治   55篇
  2023年   57篇
  2022年   55篇
  2021年   55篇
  2020年   62篇
  2019年   69篇
  2018年   122篇
  2017年   133篇
  2016年   179篇
  2015年   121篇
  2014年   160篇
  2013年   407篇
  2012年   232篇
  2011年   304篇
  2010年   202篇
  2009年   236篇
  2008年   260篇
  2007年   255篇
  2006年   227篇
  2005年   195篇
  2004年   180篇
  2003年   148篇
  2002年   140篇
  2001年   86篇
  2000年   94篇
  1999年   68篇
  1998年   74篇
  1997年   60篇
  1996年   63篇
  1995年   79篇
  1994年   74篇
  1993年   66篇
  1992年   57篇
  1991年   39篇
  1990年   35篇
  1989年   36篇
  1988年   30篇
  1987年   39篇
  1986年   40篇
  1985年   39篇
  1984年   44篇
  1983年   44篇
  1982年   52篇
  1981年   43篇
  1980年   31篇
  1979年   15篇
  1978年   29篇
  1977年   16篇
  1976年   13篇
  1972年   7篇
  1971年   9篇
排序方式: 共有5110条查询结果,搜索用时 31 毫秒
271.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   
272.
Abstract

Real‐time concentrations of black carbon, particle‐bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real‐time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban “background” sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20–40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child’s day, on average they contributed one‐third of a child’s 24‐hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within‐cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus’s own exhaust when windows were closed. Low‐emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high‐emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.  相似文献   
273.
Abstract

Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines—high-thrust and turboshaft—were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., “run-integrated” measurements). In all cases, the particle-size distributions showed single modes peaking at 20–40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.  相似文献   
274.
Abstract

A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-β-D-altro-heptulopyranose) in 20 μL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 ± 6% from five filters amended with 2 μg levoglu-cosan, and the reproducibility of the assay is 9%. The limit of detection is ~0.1 μg/mL, which is equivalent to ~3.5 ng/m3 for a 10 L/min sampler or ~8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter ≤2.5 μm or PM with aerodynamic diameter ≤10 μm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.  相似文献   
275.
Black carbon (BC), an important component of the atmospheric aerosol, has climatic, environmental, and human health significance. In this study, BC was continuously measured using a two-wavelength aethalometer (370 nm and 880 nm) in Rochester, New York, from January 2007 to December 2010. The monitoring site is adjacent to two major urban highways (I-490 and I-590), where 14% to 21% of the total traffic was heavy-duty diesel vehicles. The annual average BC concentrations were 0.76 μg/m3, 0.67 μg/m3, 0.60 μg/m3, and 0.52 μg/m3 in 2007, 2008, 2009, and 2010, respectively. Positive matrix factorization (PMF) modeling was performed using PM2.5 elements, sulfate, nitrate, ammonia, elemental carbon (EC), and organic carbon (OC) data from the U.S. Environmental Protection Agency (EPA) speciation network and Delta-C (UVBC370nm – BC880nm) data. Delta-C has been previously shown to be a tracer of wood combustion factor. It was used as an input variable in source apportionment models for the first time in this study and was found to play an important role in separating traffic (especially diesel) emissions from wood combustion emissions. The result showed the annual average PM2.5 concentrations apportioned to diesel emissions in 2007, 2008, 2009, and 2010 were 1.34 μg/m3, 1.25 μg/m3, 1.13 μg/m3, and 0.97 μg/m3, respectively. The BC conditional probability function (CPF) plots show a large contribution from the highway diesel traffic to elevated BC concentrations. The measurements and modeling results suggest an impact of the U.S Environmental Protection Agency (EPA) 2007 Heavy-Duty Highway Rule on the decrease of BC and PM2.5 concentrations during the study period.

Implications: This study suggests that there was an observable impact of the U.S EPA 2007 Heavy-Duty Highway Rule on the ambient black carbon concentrations in Rochester, New York. Aethalometer Delta-C was used as an input variable in source apportionment models and it allowed the separation of traffic (especially diesel) emissions from wood combustion emissions.  相似文献   
276.
A Monte-Carlo simulation of the approach to attainment of the National Ambient Air Quality Standard for ozone has been performed for the California Bay Area Air Quality Management District. Four compliance tests together with different design values are used in the simulation. The results show that the present compliance test requiring a zero-percent chance of violation and the design value represented by the fourth highest value in three years makes both the standard and the control requirement much more stringent than generally assumed. In fact, to attain the standard on a long-term basis would require annual means and annual second-highest values that are close to those of the rural background ozone. The simulation also shows that by taking into account the fluctuation of ozone concentrations in the compliance test, such as a t test, and by using a design value consistent with the test, a standard defined in terms of the three-year mean of the annual second-highest values not only is more consistent with the currently- perceived stringency of the present standard, but may also be attainable with a more reasonable control requirement.  相似文献   
277.
278.
Ecosystem restoration in south Florida is a state and national priority centered on the Everglades wetlands. However, urban development pressures affect the restoration potential and remaining habitat functions of the natural undeveloped areas. Land use (LU) planning often focuses at the local level, but a better understanding of the cumulative effects of small projects at the landscape level is needed to support ecosystem restoration and preservation. The South Florida Ecosystem Portfolio Model (SFL EPM) is a regional LU planning tool developed to help stakeholders visualize LU scenario evaluation and improve communication about regional effects of LU decisions. One component of the SFL EPM is ecological value (EV), which is evaluated through modeled ecological criteria related to ecosystem services using metrics for (1) biodiversity potential, (2) threatened and endangered species, (3) rare and unique habitats, (4) landscape pattern and fragmentation, (5) water quality buffer potential, and (6) ecological restoration potential. In this article, we demonstrate the calculation of EV using two case studies: (1) assessing altered EV in the Biscayne Gateway area by comparing 2004 LU to potential LU in 2025 and 2050, and (2) the cumulative impact of adding limestone mines south of Miami. Our analyses spatially convey changing regional EV resulting from conversion of local natural and agricultural areas to urban, industrial, or extractive use. Different simulated local LU scenarios may result in different alterations in calculated regional EV. These case studies demonstrate methods that may facilitate evaluation of potential future LU patterns and incorporate EV into decision making.  相似文献   
279.
Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0-2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m yr. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.  相似文献   
280.
Stoeckel, James A., Jade Morris, Elizabeth Ames, David C. Glover, Michael J. Vanni, William Renwick, and María J. González, 2012. Exposure Times to the Spring Atrazine Flush Along a Stream-Reservoir System. Journal of the American Water Resources Association (JAWRA) 48(3): 616-634. DOI: 10.1111/j.1752-1688.2011.00633.x Abstract: We used enzyme-linked immunosorbent assay to examine reservoir-mediated shifts in spring to fall exposure of aquatic organisms to the spring atrazine pulse over four years in a Midwestern stream-reservoir system. Peak atrazine concentrations in the major inflowing stream exceeded 10 μg/l in all four years. The reservoir had a beneficial effect in two of four years by diluting atrazine below the 10 μg/l threshold. However, during the other two years, exposure times above 10 μg/l were approximately doubled in the reservoir compared to the major inflowing stream. Thresholds of 3 and 5 μg/l were exceeded during all four years in the reservoir. The uplake and downlake reservoir sites were four to five times more likely to exceed these thresholds and aquatic organisms were subjected to longer exposure times above these thresholds compared to the inflowing stream. Release of elevated atrazine concentrations from the reservoir extended exposure times in the outflowing stream. This effect was most pronounced just below the dam. Aquatic organisms upstream of the reservoir were most likely to experience acute exposures whereas organisms within and immediately downstream of the reservoir were more likely to experience chronic exposures. The ubiquity of reservoirs and the annual spring herbicide flush highlight the importance of considering the presence and relative location of reservoirs when assessing risk to aquatic communities as well as locations of drinking water intakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号