首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   11篇
  国内免费   3篇
安全科学   23篇
废物处理   22篇
环保管理   104篇
综合类   20篇
基础理论   98篇
污染及防治   102篇
评价与监测   14篇
社会与环境   12篇
灾害及防治   23篇
  2022年   2篇
  2021年   3篇
  2020年   8篇
  2019年   3篇
  2018年   9篇
  2017年   5篇
  2016年   9篇
  2015年   12篇
  2014年   11篇
  2013年   28篇
  2012年   14篇
  2011年   19篇
  2010年   15篇
  2009年   15篇
  2008年   13篇
  2007年   20篇
  2006年   17篇
  2005年   13篇
  2004年   13篇
  2003年   14篇
  2002年   26篇
  2001年   4篇
  2000年   7篇
  1999年   7篇
  1998年   9篇
  1997年   6篇
  1996年   7篇
  1995年   3篇
  1994年   7篇
  1993年   9篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
排序方式: 共有418条查询结果,搜索用时 109 毫秒
411.
412.
Carbon-14 ((14)C) is one of the most important radionuclides from the perspective of dose estimation due to the nuclear fuel cycle. Ten years of monitoring data on (14)C in airborne emissions, in atmospheric CO(2) and in rice grain collected around the Tokai reprocessing plant (TRP) showed an insignificant radiological effect of the TRP-derived (14)C on the public, but suggested a minor contribution of the TRP-derived (14)C to atmospheric (14)C concentrations, and an influence on (14)C concentrations in rice grain at harvest. This paper also summarizes a modelling exercise (the so-called rice scenario of the IAEA's EMRAS program) in which (14)C concentrations in air and rice predicted with various models using information on (14)C discharge rates, meteorological conditions and so on were compared with observed concentrations. The modelling results showed that simple Gaussian plume models with different assumptions predict monthly averaged (14)C concentrations in air well, even for near-field receptors, and also that specific activity and dynamic models were equally good for the prediction of inter-annual changes in (14)C concentrations in rice grain. The scenario, however, offered little opportunity for comparing the predictive capabilities of these two types of models because the scenario involved a near-chronic release to the atmosphere. A scenario based on an episodic release and short-term, time-dependent observations is needed to establish the overall confidence in the predictions of environmental (14)C models.  相似文献   
413.
414.
We investigated the toxicity of an emerging polynitramine energetic material hexanitrohexaazaisowurtzitane (CL-20) to the soil invertebrate species Enchytraeus crypticus by adapting then using the Enchytraeid Reproduction Test (ISO/16387:2003). Studies were designed to develop ecotoxicological benchmark values for ecological risk assessment of the potential impacts of accidental release of this compound into the environment. Tests were conducted in Sassafras Sandy Loam soil, which supports relatively high bioavailability of CL-20. Weathering and aging procedures for CL-20 amended into test soil were incorporated into the study design to produce toxicity data that better reflect soil exposure conditions in the field compared with the toxicity in freshly amended soils. Concentration-response relationships for measurement endpoints were determined using nonlinear regressions. Definitive tests showed that toxicities for E. crypticus adult survival and juvenile production were significantly increased in weathered and aged soil treatments compared with toxicity in freshly amended soil, based on 95% confidence intervals. The median effect concentration (EC50) and EC20 values for juvenile production were 0.3 and 0.1 mg kg-1, respectively, for CL-20 freshly amended into soil, and 0.1 and 0.035 mg kg-1, respectively, for weathered and aged CL-20 soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged CL-20 soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of emerging energetic contaminants in soil.  相似文献   
415.
OBJECTIVE: This article assesses the position-dependent injury tolerance of the hip in the frontal direction based on testing of eight postmortem human subjects. METHODS: For each subject, the left and right hemipelvis complex was axially loaded using a previously developed test configuration. Six positions were defined from a seated femur neutral condition, combining flexed, neutral, and extended femur positions with abducted, neutral, and adducted positions. RESULTS: Axial injury tolerances based on peak force were found to be 6,850 +/- 840 N in the extended, neutral position and 4,080 +/- 830 N in the flexed, neutral position. From the flexed neutral orientation, the peak axial force increased 18% for 20 degrees abduction and decreased 6% for 20 degrees adduction. From the extended, neutral orientation, the peak axial force decreased 4% for 20 degrees abduction and decreased 3% for 20 degrees adduction. However, as there is evidence that increases in loading may occur after the initiation of fracture, the magnitude of the peak force is likely related to the extent of injury, not to the initial tolerance. Using the axial femur force at the initiation of fracture (assessed with acoustic crack sensors) as a potentially more relevant indicator of injury may lower the existing injury criteria. This fracture initiation force varied by position from 3,010 +/- 560 N in the flexed, neutral position to 5,470 N in the extended, abducted position. Further, there was a large position-dependent variation in the ratio of fracture initiation force to the peak axial force. The initiation of fracture was 83% of the peak axial force in the extended, abducted position, but the ratio was 34% in the extended, adducted position. CONCLUSIONS: This may have significant implications for the development of pelvic injury criteria by automobile designers attempting to mitigate pelvis injuries.  相似文献   
416.
Widespread afforestation has been proposed as one means of addressing the increasing dryland and stream salinity problem in Australia. However, modelling results presented here suggest that large-scale tree planting will substantially reduce river flows and impose costs on downstream water users if planted in areas of high runoff yield. Streamflow reductions in the Macquarie River, NSW, Australia are estimated for a number of tree planting scenarios and global warming forecasts. The modelling framework includes the Sacramento rainfall-runoff model and IQQM, a streamflow routing tool, as well as various global climate model outputs from which daily rainfall and potential evaporation data files have been generated in OzClim, a climate scenario generator. For a 10% increase in tree cover in the headwaters of the Macquarie, we estimate a 17% reduction in inflows to Burrendong Dam. The drying trend for a mid-range scenario of regional rainfall and potential evaporation caused by a global warming of 0.5 degree C may cause an additional 5% reduction in 2030. These flow reductions will decrease the frequency of bird-breeding events in Macquarie Marshes (a RAMSAR protected wetland) and reduce the security of supply to irrigation areas downstream. Inter-decadal climate variability is predicted to have a very significant influence on catchment hydrologic behaviour. A further 20% reduction in flows from the long-term historical mean is possible, should we move into an extended period of below average rainfall years, such as occurred in eastern Australia between 1890 and 1948. Because current consumptive water use is largely adapted to the wetter conditions of post 1949, a return to prolonged dry periods would cause significant environmental stress given the agricultural and domestic water developments that have been instituted.  相似文献   
417.
418.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号