首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   2篇
  国内免费   1篇
安全科学   4篇
废物处理   3篇
环保管理   34篇
综合类   4篇
基础理论   25篇
污染及防治   29篇
评价与监测   6篇
社会与环境   4篇
  2023年   1篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   13篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   7篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1972年   2篇
排序方式: 共有109条查询结果,搜索用时 46 毫秒
31.
Survival and reproduction are the two primary life‐history traits essential for species’ persistence; however, the environmental conditions that support each of these traits may not be the same. Despite this, reproductive requirements are seldom considered when estimating species’ potential distributions. We sought to examine potentially limiting environmental factors influencing the distribution of an oviparous reptile of conservation concern with respect to the species’ survival and reproduction and to assess the implications of the species’ predicted climatic constraints on current conservation practices. We used ecological niche modeling to predict the probability of environmental suitability for the alligator snapping turtle (Macrochelys temminckii). We built an annual climate model to examine survival and a nesting climate model to examine reproduction. We combined incubation temperature requirements, products of modeled soil temperature data, and our estimated distributions to determine whether embryonic development constrained the northern distribution of the species. Low annual precipitation constrained the western distribution of alligator snapping turtles, whereas the northern distribution was constrained by thermal requirements during embryonic development. Only a portion of the geographic range predicted to have a high probability of suitability for alligator snapping turtle survival was estimated to be capable of supporting successful embryonic development. Historic occurrence records suggest adult alligator snapping turtles can survive in regions with colder climes than those associated with consistent and successful production of offspring. Estimated egg‐incubation requirements indicated that current reintroductions at the northern edge of the species’ range are within reproductively viable environmental conditions. Our results highlight the importance of considering survival and reproduction when estimating species’ ecological niches, implicating conservation plans, and benefits of incorporating physiological data when evaluating species’ distributions.  相似文献   
32.
Spontaneous combustion and low-temperature oxidation of waste coal and other carbonaceous material at open-cut coal mines are potentially significant sources of greenhouse gas emissions. However, the magnitude of these emissions is largely unknown. In this study, emissions from spontaneous combustion and low-temperature oxidation were estimated for six Australian open-cut coal mines with annual coal production ranging from 1.7 to more than 16 Mt. Greenhouse emissions from all other sources at these mines were also estimated and compared to those from spontaneous combustion and low-temperature oxidation. In all cases, fugitive emission of methane was the largest source of greenhouse gas; however, in some mines, spontaneous combustion accounted for almost a third of all emissions. For one mine, it was estimated that emissions from spontaneous combustion were around 250,000 t CO2-e per annum. The contribution from low-temperature oxidation was generally less than about 1% of the total for all six mines. Estimating areas of spoil affected by spontaneous combustion by ground-based surveys was prone to under-report the area. Airborne infrared imaging appears to be a more reliable method.  相似文献   
33.
Summary The development products of environmental research lag behind in Australia. The conventional technology transfer model may not apply where environmental research, especially in the social sciences, is still seen as marginal to society. Pragmatic planning is needed for strategic security in times of trouble ahead. Cultural alignment with technological advance allows seduction by laboratories, white gladiatorial coats and expensive equipment imparting high credibility. A correctness for research futures disallows more radical pathways by the use of profit watchers, waste watch committees, technocrats and masculinist political views.A new protocol for environmental research and development calls for less complacency, scrutiny of political and military investment in nuclear futures, greater public policy analysis of issues such as pesticides in Australia's cotton industry, more attention to natural systems thresholds, radical review of social mores, more flexible management systems and closer links between strategic land use and environmental planning.She currently works for the New South Wales Department of Water Resources as a Senior Executive Officer. She has published widely on environmental policy analysis and water planning, and is a Director of Australia's National Land and Water Resources Research and Development Corporation.  相似文献   
34.
ABSTRACT: A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed stream-flow during the entire simulation period was 13.36 × 106 m3 and the simulated streamflow volume was 13.82 × 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.  相似文献   
35.
Little is known about the physicochemical properties of beryllium aerosols associated with increased risk of beryllium sensitization and chronic beryllium disease (CBD). Such information is needed to evaluate whether airborne mass of beryllium is the appropriate metric of exposure or alternatively to provide a scientific basis for using information on particle size, surface area, and chemistry to support an improved exposure limit based on bioavailability through the inhalation and dermal routes of exposure. Thus, we used a suite of analytical techniques to characterize aerodynamically size-fractionated beryllium particles and powders that have been associated in epidemiological studies with higher prevalence of CBD. Aerosol particles were sampled from the ventilation systems of production lines for powders of beryllium metal and beryllium oxide and for ingots of copper-beryllium alloy. End product powders from the metal and oxide production lines were also collected.Particles released during production of beryllium metal were found to be complex, having heterogeneous composition, including reactive species such as fluorine. Powders from beryllium metal production were of high purity with only a minor component of beryllium oxide. Both particles and powders from oxide production were high-purity oxide. Particles released during production of copper-beryllium alloy were heterogeneous, being predominantly copper oxides. Thus, all particles and powders contain at least some beryllium in the form of beryllium oxide.These data justify efforts to thoroughly characterize beryllium aerosol properties when performing exposure assessments. The data also suggest that differences in particle chemical composition, size, number, and surface area may influence bioavailability of beryllium and contribute to risk of CBD. However, a scientific basis does not yet exist to replace mass as the current metric of exposure.  相似文献   
36.
An understanding of temporal trends in total stream‐flow (TSF), base flow (BF), and storm runoff (RO) can help in the development of water management plans for watersheds and local communities. In this study, 47 streams across Pennsylvania that were unregulated and unaffected by karst environments or coal mining were studied for flow trends and their relationships to selected climate parameters for the period 1971 to 2001. LOWESS curves for annual flow showed that almost all of the selected streams in Pennsylvania had downward trends in total TSF, BF, and RO. Using a seasonal Mann‐Kendall analysis, downward trends were significant at an α= 0.05 level for 68, percent 70 percent, and 62 percent of the streams and at an α= 0.10 level for another 19, 17, and 13 percent of the streams for TSF, BF, and RO, respectively. The ratio of BF to TSF (RBS) had significant upward trends for 34 percent of the streams at an α= 0.05 level and for another 9 percent of the streams at an α= 0.10 level, indicating that TSF decreased relative to BF for more than 40 percent of the streams during the previous 30 years. Downward trends in TSF, BF, and RO were most common for the months of June, July, and December. Trend analyses using monthly and annual total precipitation and mean temperature showed some association between climate and the streamflow trends, but Spearman's correlation and partial Mann‐Kendall analyses revealed that the trends in TSF, BF, and RO could not be explained by trends in precipitation and temperature alone, and thus urbanization and development may have played a role.  相似文献   
37.
Oil and gas activities have occurred in the Bakken region of North Dakota and nearby states and provinces since the 1950s but began increasing rapidly around 2008 due to new extraction methods. Three receptor-based techniques were used to examine the potential impacts of oil and gas extraction activities on airborne particulate concentrations in Class I areas in and around the Bakken. This work was based on long-term measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network. Spatial and temporal patterns in measured concentrations were examined before and after 2008 to better characterize the influence of these activities. A multisite back-trajectory analysis and a receptor-based source apportionment model were used to estimate impacts. Findings suggest that recent Bakken oil and gas activities have led to an increase in regional fine (PM2.5—particles with aerodynamic diameters <2.5 µm) soil and elemental carbon (EC) concentrations, as well as coarse mass (CM = PM10–PM2.5). Influences on sulfate and nitrate concentrations were harder to discern due to the concurrent decline in regional emissions of precursors to these species from coal-fired electric generating stations. Impacts were largest at sites in North Dakota and Montana that are closest to the most recent drilling activity.

Implications: The increase in oil and gas activities in the Bakken region of North Dakota and surrounding areas has had a discernible impact on airborne particulate concentrations that impact visibility at protected sites in the region. However, the impact has been at least partially offset by a concurrent reduction in emissions from coal-fired electric generating stations. Continuing the recent reductions in flaring would likely be beneficial for the regional visual air quality.  相似文献   

38.
In order to resolve the spatial component of the design of a water quality monitoring network, a methodology has been developed to identify the critical sampling locations within a watershed. This methodology, called Critical Sampling Points (CSP), focuses on the contaminant total phosphorus (TP), and is applicable to small, predominantly agricultural-forested watersheds. The CSP methodology was translated into a model, called Water Quality Monitoring Station Analysis (WQMSA). It incorporates a geographic information system (GIS) for spatial analysis and data manipulation purposes, a hydrologic/water quality simulation model for estimating TP loads, and an artificial intelligence technology for improved input data representation. The model input data include a number of hydrologic, topographic, soils, vegetative, and land use factors. The model also includes an economic and logistics component. The validity of the CSP methodology was tested on a small experimental Pennsylvanian watershed, for which TP data from a number of single storm events were available for various sampling points within the watershed. A comparison of the ratios of observed to predicted TP loads between sampling points revealed that the model's results were promising.  相似文献   
39.
Global land use patterns and increasing pressures on water resources demand creative urban stormwater management. Strategies encouraging infiltration can enhance groundwater recharge and water quality. Urban subsoils are often relatively impermeable, and the construction of many stormwater detention best management practices (D-BMPs) exacerbates this condition. Root paths can act as conduits for water, but this function has not been demonstrated for stormwater BMPs where standing water and dense subsoils create a unique environment. We examined whether tree roots can penetrate compacted subsoils and increase infiltration rates in the context of a novel infiltration BMP (I-BMP). Black oak (Quercus velutina Lam.) and red maple (Acer rubrum L.) trees, and an unplanted control, were installed in cylindrical planting sleeves surrounded by clay loam soil at two compaction levels (bulk density = 1.3 or 1.6 g cm(-3)) in irrigated containers. Roots of both species penetrated the more compacted soil, increasing infiltration rates by an average of 153%. Similarly, green ash (Fraxinus pennsylvanica Marsh.) trees were grown in CUSoil (Amereq Corp., New York) separated from compacted clay loam subsoil (1.6 g cm(-3)) by a geotextile. A drain hole at mid depth in the CUSoil layer mimicked the overflow drain in a stormwater I-BMP thus allowing water to pool above the subsoil. Roots penetrated the geotextile and subsoil and increased average infiltration rate 27-fold compared to unplanted controls. Although high water tables may limit tree rooting depth, some species may be effective tools for increasing water infiltration and enhancing groundwater recharge in this and other I-BMPs (e.g., raingardens and bioswales).  相似文献   
40.
Two species of marine mussel, Mytilus edulis and M. galloprovincialis hybridize on the coasts of western Europe. Studies of hybrid mussel populations have shown that natural selection favors M. galloprovincialis-like genotypes within this hybrid zone. Many hypotheses have been proposed to explain differential mortality in these populations. This study tests two hypotheses addressing factors of mortality in a population, and describes yearly energy storage and reproductive cycles of these two species and their hybrids. No evidence was found that the two taxa have different overall levels of reproductive effort or parasite infestation. They do, however, have asynchronous spawning periods and divergent energy storage strategies. In the year of this study, 1993, the M. edulis genotypic class spawned as a group in June and July. After spawning, they built up a high level of mantle energy-storage tissues that are probably used for gametogenesis in the following winter and spring. The M. galloprovincialis genotypic group, however, spawned asynchronously, beginning in June and finishing by August, and did not build up high levels of energy-storage tissues in summer. These results add a temporal component to the interpretation of selective forces acting to shape this hybrid zone. Vulnerability of each species to mortality factors may differ because of their divergent reproductive and energy-storage cycles. Received: 15 January 1999 / Accepted: 26 July 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号