首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21479篇
  免费   208篇
  国内免费   219篇
安全科学   584篇
废物处理   1047篇
环保管理   2530篇
综合类   2924篇
基础理论   5485篇
环境理论   5篇
污染及防治   5888篇
评价与监测   1769篇
社会与环境   1531篇
灾害及防治   143篇
  2023年   100篇
  2022年   227篇
  2021年   245篇
  2020年   154篇
  2019年   193篇
  2018年   360篇
  2017年   362篇
  2016年   562篇
  2015年   391篇
  2014年   631篇
  2013年   1825篇
  2012年   714篇
  2011年   928篇
  2010年   852篇
  2009年   844篇
  2008年   953篇
  2007年   1039篇
  2006年   916篇
  2005年   760篇
  2004年   772篇
  2003年   764篇
  2002年   714篇
  2001年   960篇
  2000年   657篇
  1999年   412篇
  1998年   283篇
  1997年   257篇
  1996年   296篇
  1995年   282篇
  1994年   259篇
  1993年   245篇
  1992年   251篇
  1991年   213篇
  1990年   218篇
  1989年   225篇
  1988年   203篇
  1987年   160篇
  1986年   131篇
  1985年   146篇
  1984年   173篇
  1983年   160篇
  1982年   199篇
  1981年   137篇
  1980年   120篇
  1979年   152篇
  1978年   118篇
  1977年   107篇
  1976年   102篇
  1975年   83篇
  1974年   89篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
961.
The effect of organic matter on the solid-phase extraction (SPE) efficiency for pesticides belonging to different chemical groups (urea-derivatives, carbamates and triazines) and having different polarities, was simultaneously studied for the first time in pure and simulated water samples. SPE was carried out in precolumns packed with C18 silica or styrene-divinylbenzene copolymer PLRP-S phases on-line coupled to high performance liquid chromatography (HPLC) analysis. Retention factors in water (k'(W)) were estimated for 25 compounds and used for the calculation of the theoretical breakthrough volume (Vb(T)) in pure water. Experimental breakthrough volumes (Vb(E)) were first determined using purified and deionized water as the matrix for selected compounds having Vb(T) < 500 mL; then, the same water with an added humic acid sodium salt (HA) at 0.4-5.6 mg/L of dissolved organic carbon (DOC) content, was used as the matrix for compounds having VbE < 500 mL in pure water. Several polar pesticides showed negative linear or logarithmic Vb(E) curves depending on HA content; their recoveries were also determined in environmental samples having low dissolved organic carbon values, between 0.5-6.4 mg/L. A similar behavior was observed for these compounds in simulated and natural water samples, where DOC concentration and the percolated volume (Vp) mainly determine the solute recoveries values. However, the variation of recoveries as a function of DOC content could be negative or null depending on the two examined conditions (Vp lower or larger than Vb(E) in pure water). Results demonstrated that breakthrough volume must always be considered to correctly interpret the participation of dissolved humic material on the SPE efficiency of organic micropollutants in water.  相似文献   
962.
The behavior of an amperometric organic-phase biosensor consisting of a gold electrode modified first with a mercaptobenzothiazole self-assembled monolayer, followed by electropolymerization of polyaniline in which acetylcholinesterase as enzyme was immobilized, has been developed and evaluated for organophosphorous pesticide detection. The voltammetric results have shown that the formal potential shifts anodically as the Au/MBT/PANI/AChE/PVAc thick-film biosensor responded to acetylthiocholine substrate addition under anaerobic conditions in selected organic solvent media containing 2% v/v 0.05 M phosphate buffer, 0.1 M KCl (pH 7.2) solution. Detection limits in the order of 0.147 ppb for diazinon and 0.172 ppb for fenthion in acetone-saline phosphate buffer solution, and 0.180 ppb for diazinon and 0.194 ppb for fenthion in ethanol-saline phosphate buffer solution has been achieved.  相似文献   
963.
Source apportionment of fine particles (PM2.5, particulate matter < 2 microm in aerodynamic diameter) is important to identify the source categories that are responsible for the concentrations observed at a particular receptor. Although receptor models have been used to do source apportionment, they do not fully take into account the chemical reactions (including photochemical reactions) involved in the formation of secondary fine particles. Secondary fine particles are formed from photochemical and other reactions involving precursor gases, such as sulfur dioxide, oxides of nitrogen, ammonia, and volatile organic compounds. This paper presents the results of modeling work aimed at developing a source apportionment of primary and secondary PM2.5. On-road mobile source and point source inventories for the state of Tennessee were estimated and compiled. The national emissions inventory for the year 1999 was used for the other states. U.S. Environmental Protection Agency Models3/Community Multi-Scale Air Quality modeling system was used for the photochemical/secondary particulate matter modeling. The modeling domain consisted of a nested 36-12-4-km domain. The 4-km domain covered the entire state of Tennessee. The episode chosen for the modeling runs was August 29 to September 9, 1999. This paper presents the approach used and the results from the modeling and attempts to quantify the contribution of major source categories, such as the on-road mobile sources (including the fugitive dust component) and coal-fired power plants, to observed PM2.5 concentrations in Tennessee. The results of this work will be helpful in policy issues targeted at designing control strategies to meet the PM2.5 National Ambient Air Quality Standards in Tennessee.  相似文献   
964.
Toluene removal biofilter modeling: Optimization and case study   总被引:1,自引:0,他引:1  
Based on the model proposed by De Visscher and Van Cleemput for methane oxidation in landfill cover soils, a simulation model for biofiltration of toluene-contaminated air has been developed for biofilters with substrate inhibition. A convenient way to optimize biofilter performance was developed assuming Haldane kinetics. It was calculated that for a typical oilsands operation emitting 200 ton of toluene annually, 90% of the toluene can be removed by a 740 m3 biofilter, if the waste gas sent to the biofilter has a toluene concentration of 2.25 g m−3. The optimal initial concentration increases with increasing target efficiency.  相似文献   
965.
966.
In this study, the Tsunami-caused deterioration of soil and groundwater quality in the agricultural fields of coastal Nagapattinam district of Tamilnadu state in India is presented by analyzing their salinity and sodicity parameters. To accomplish this, three sets of soil samples up to a depth of 30cm from the land surface were collected for the first six months of the year 2005 from 28 locations and the ground water samples were monitored from seven existing dug wells and hand pumps covering the study region at intervals of 3 months. The EC and pH values of both the soil and ground water samples were estimated and the spatial and temporal variability mappings of these parameters were performed using the geostatistical analysis module of ArcGIS((R)). It was observed that the spherical semivariogram fitted well with the data set of both EC and pH and the generated kriged maps explained the spatial and temporal variability under different ranges of EC and pH values. Further, the recorded EC and pH data of soil and ground water during pre-Tsunami periods were compared with the collected data and generated variability soil maps of EC and pH of the post-Tsunami period. It was revealed from this analysis that the soil quality six months after the Tsunami was nearing the pre-Tsunami scenario (EC< 1.5dSm(-1); pH<8), whereas the quality of ground water remained highly saline and unfit for irrigation and drinking. These observations were compared with the ground scenarios of the study region and possible causes for such changes and the remedial measures for taking up regular agricultural practices are also discussed.  相似文献   
967.
There is growing interest in the development of more cost-effective and retrofit technologies for the upgrade and expansion of existing wastewater treatment plants with extreme space constraints. A free-floating sponge media (BioCube) process, using a 24L lab scale reactor, was operated to study the nitrification profiles and microbial community. The COD removal efficiencies were maintained, at an average of 95%, with the mixed liquor suspended solids (MLSS) inside the BioCube sponge media maintained at 12,688mg/L. The nitrification removal efficiencies were between 92% and 100%, with an average value of 99%. From the results of microelectrode measurements, the ammonium ion concentration was found to rapidly decrease from the surface of the BioCube sponge media to a depth of 2mm due to chemical reactions carried out by ammonia oxidizing bacteria (AOB) species. Multi-fluorescence in situ hybridization (FISH) has been used to investigate the spatial distributions of various microbial activities within reactors. Microbial communities were targeted using different oligonucleotide probes specific to AOB and nitrite oxidizing bacteria (NOB). There were a large number of AOB populations, but these were not uniformly distributed in the biofilm compared to the NOB populations.  相似文献   
968.
Nickel(II) reacts with N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone (ECCT) and forms a yellow colored complex, which was extracted into n-butanol from sodium acetate and acetic acid buffer at pH 6.0. The absorbance value of the Ni(II)-ECCT complex was measured at different intervals of time at 400nm, to ascertain the time stability of the complex. The extraction of the complex into the solvent was instantaneous and stable for more than 72h. The system obeyed Beer's law in the concentration range of 1.2-5.6mugml(-1) of nickel(II), with an excellent linearity and a correlation coefficient of 0.999. The molar absorptivity and Sandell's sensitivity of the extracted species were found to be 1.114x10(4)Lmol(-1)cm(-1) and 5.29x10(-3)mugcm(-2) at 400nm, respectively. Hence, a detailed study of the extraction of nickel(II) with ECCT has been undertaken with a view to developing a rapid and sensitive extractive spectrophotometric method for the determination of nickel(II) when present alone or in the presence of diverse ions which are usually associated with nickel(II) in environmental matrices like soil and industrial effluents. Various standard alloy samples (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are comparable with those from atomic absorption spectrometry and were found to be in good agreement.  相似文献   
969.
In order to characterize the different sources of exposure to arsenic (As), urinary excretion of total As, the sum of inorganic As+MMA+DMA determined by the hydride generation-atomic absorption spectrophotometry technique, and the species As(3), As(5), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine were determined in 49 workers at a steel foundry, with presumed occupational exposure to As, and 50 subjects from the general population, all males. No evidence of occupational exposure to As resulted from environmental monitoring performed in the foundry, although the analysis of minerals used as raw materials showed the presence of As, particularly in fossils and fine ores. The urinary concentrations of As(3), MMA, DMA, the sum of inorganic As+MMA+DMA and total As were not different in the two groups, while arsenobetaine appeared significantly higher in the controls than in the workers. The different species of urinary As were all significantly correlated. Urinary excretion of As(3) was associated with the consumption of mineral water and with residence in an industrial zone, while MMA, DMA, arsenobetaine, the sum of inorganic As+MMA+DMA and total As urinary excretion were associated with the consumption of crustaceans and/or shellfish 3 days or less before urine collection. Multiple regression analysis confirmed these results. In conclusion, in populations with a high consumption of seafood, living in areas characterized by coastal/marine As pollution, only speciation of As can identify a prevalent role of environmental sources, like the consumption of seafood contaminated by As, in determining urinary As excretion, and exclude an occupational origin of the exposure.  相似文献   
970.
Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号