首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   2篇
废物处理   11篇
环保管理   6篇
综合类   8篇
基础理论   6篇
污染及防治   26篇
评价与监测   4篇
社会与环境   1篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   11篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1987年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
41.
Nucleic acid aptamers are small-size ligands that selectively bind to molecular segments even when they protrude from cell surfaces. Due to their high specificity, aptamers are widely used in biomedical research and as probes for different applications. Here, we tested whether aptamers can also discriminate among phytoplankton cells. As a proof of concept we focused on the widespread centric diatom Leptocylindrus danicus and generated two aptamers that selectively bind to its cell surface. The aptamers did not bind to other diatoms tested, which included both pennate (Pseudo-nitzschia multistriata) and centric (Skeletonema marinoi, Chaetoceros socialis) species. They also showed negative binding to closely related species (Tenuicylindrus belgicus, Leptocylindrus aporus, Leptocylindrus convexus), which are hardly recognizable with microscopy techniques. In addition, aptamers discriminated also among cells of the same clone, suggesting a potential use of aptamers as clone-specific/stage-specific probes to track phytoplankton life stages in their natural environment. While the method still needs to be tested with natural algal samples, it can complement in a unique way the existing approaches to discriminate among species and possibly life stages of marine phytoplankton. The method can find useful application in taxonomic and ecological studies as well as in environmental monitoring including early warning strategies.  相似文献   
42.
Metal concentrations in sediment and in whole tissue of the benthic polychaete Glycera longipinnis collected along the southwest coast of India were analysed. Relative seasonal accumulation of metals (Cu, Pb, Cr, Ni, Zn, Cd, Hg) was studied by categorising the habitat as less polluted or highly polluted based on metal contamination routed through industrial and urban sources. The metal content in tissues varied seasonally in the ranges, Cu: 2.21–27.08 μg·g?1, Pb: 0.06–4.92 μg·g?1, Cr: 1.73–29.20 μg·g?1, Ni: 1.60–4.61 μg·g?1, Zn: 14.72–82.30 μg·g?1, Cd: 0.04–1.38 μg·g?1and Hg: below decetable limits to 0.86 μg·g?1. Concentration of heavy metals was found to be high in the whole body of G. longipinnis pooled from the polluted transects. The results of this study suggest that G. longipinnis may act as a useful biological indicator for heavy metal pollution along the southwest coast of India.  相似文献   
43.
The atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. The estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This paper describes the meteorological characteristics of Narora Atomic Power Station (NAPS) Nuclear Power Project site by using the integral parameters developed by Allwine and Whiteman (Atmospheric Environment 28(4):713–721, 1994). Meteorological data measured during the period 2006–2010 were analysed. The integral quantities related to the occurrence of stagnation, recirculation and ventilation characteristics were studied for the NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation and ventilation characteristics during 2006–2010 at the NAPS site is observed to be 33.8, 19.5 and 34.7 % of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1 and 44.3 %) and recirculation (32.6 % of the summer season). The presence of more dispersed light winds during pre-winter season with predominant wind directions W and WNW results in more stagnation (59.7 % of the pre-winter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent release from any nuclear industry during the pre-operational as well as operational phase.  相似文献   
44.
Abstract

This study tested the hypothesis that exposure to mixtures containing fine particles and ozone (O3) would cause pulmonary injury and decrements in functions of immunological cells in exposed rats (22–24 months old) in a dose-dependent manner. Rats were exposed to high and low concentrations of ammonium bisulfate and elemental carbon and to 0.2 ppm O3. Control groups were exposed to purified air or O3 alone. The biological end points measured included histopathological markers of lung injury, bronchoalveolar lung fluid proteins, and measures of the function of the lung’s innate immuno-logical defenses (macrophage antigen-directed phagocytosis and respiratory burst activity). Exposure to O3 alone at 0.2 ppm did not result in significant changes in any of the measured end points. Exposures to the particle mixtures plus O3 produced statistically significant changes consistent with adverse effects. The low-concentration mixture produced effects that were statistically significant compared to purified air but, with the exception of macrophage Fc receptor binding, exposure to the high-concentration mixture did not. The effects of the low- and high-concentration mixtures were not significantly different. The study supports previous work that indicated that particle + O3 mixtures were more toxic than O3 alone.  相似文献   
45.
Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at ?1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2.
Graphical abstract ?
  相似文献   
46.
Environmental Science and Pollution Research - Reversible hydrogen storage in MgH2 under specified conditions is a possible way for the positive reception of hydrogen economy, in which the...  相似文献   
47.
Environmental Science and Pollution Research - In this investigation, the geochemical progression of a total of 31 groundwater samples of pre-monsoon season was assessed with categorization based...  相似文献   
48.
A polyaniline Zr(IV) selenotungstophosphate nanocomposite was prepared via sol-gel method and characterized by thermogravimetric analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The combined sorptional–photocatalytic activity of the nanocomposite for degradation of methylene blue and malachite green was investigated and was found to be more efficient than separate adsorption in the dark followed by photocatalysis. The dyes were degraded in 3 h by 96% and 89% by the combined process, as compared to 86% and 72% by the two-step process in 5 h. The nanocomposite material showed antimicrobial activity against Staphylococcus aureus and Escherichia coli.  相似文献   
49.
Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3–2.7 μg Sm?3, 2.4–1.1 μg Sm?3, 3.1–0.7 μg Sm?3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) ? ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS ? ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr?1 and 3.2 ton yr?1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr?1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.  相似文献   
50.
An attempted has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35–40%), acetylene (13–20%), ethylene (3–4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg?1 and the concentrations of toxic gases, such as NOx, HCl and HF, were below the regulatory emissions limit. Gas chromatography–mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 μm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号