A laboratory-scale (40 l) reactor was designed to investigate dry anaerobic digestion. The reactor is equipped with an intermittent paddle mixer, enabling complete mixing in the reactor. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions and compared to operation results obtained on a pilot-scale (21 m3) with the same feedstock. Biogas and methane production at the end of the tests were similar (around 200 m3 CH4STP/tVS), and the dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in larger ones. Adaptation of micro-organisms to the waste and operating conditions was also pointed out along the consecutive batches. 相似文献
The social and economic ramifications of marine conservation strategies such as marine protected areas (MPAs) are important to consider prior to their implementation to ensure that they do not exceed the resilience of resource-users and that resource protection might be maximised through compliance and low resistance. This paper presents a framework in which the human dimensions can be more easily and usefully integrated into the design and delivery of conservation initiatives. The framework espouses quantifying (1) the level of dependency on the resource; (2) perceptions towards conservation initiatives; and (3) social resilience. The framework is applied in Salum, Egypt, which is the site of a prospective MPA. 相似文献
Evaluating the quality of ecosystems in terms of biological patrimony and functioning is of critical importance in the actual context of intensified human activities. Microbial diversity is commonly used as a bioindicator of ecosystems functioning. However, there is a lack of sensitivity of microbial diversity indicators in the case of moderate and chronic environmental degradation, such as atmospheric deposition of pollutants, agricultural practices, diffuse pollution by wastewater and climate change. As a consequence, there is a need for alternative bioindicators of soils and water quality. Here, we discuss the interest of adopting a more integrative approach based on biotic interaction networks beyond the simple diversity indicators. We review how the various biotic interactions can be integrated in the various microbial networks such as trophic, mutualistic and co-occurrence networks. Then we discuss the efficiency of microbial networks and associated metrics to detect changes in microbial communities. We conclude that the connectance, the number of links and the average degree of co-occurrence networks could vary from 10 to 50% in response to minor perturbations when microbial diversity parameters remain stable. Finally, we analyze studies that aimed at linking microbial networks and activity to evaluate the potential of such networks for providing simple and operational indicators of ecosystem quality and functioning. 相似文献
Health risks posed by ambient air pollutants to the urban Lebanese population have not been well characterized. The aim of this study is to assess cancer risk and mortality burden of non-methane hydrocarbons (NMHCs) and particulates (PM) based on two field-sampling campaigns conducted during summer and winter seasons in Beirut. Seventy NMHCs were analyzed by TD-GC-FID. PM2.5 elemental carbon (EC) components were examined using a Lab OC-EC aerosol Analyzer, and polycyclic aromatic hydrocarbons were analyzed by GC-MS. The US EPA fraction-based approach was used to assess non-cancer hazard and cancer risk for the hydrocarbon mixture, and the UK Committee on Medical Effects of Air Pollutants (COMEAP) guidelines were followed to determine the PM2.5 attributable mortality burden. The average cumulative cancer risk exceeded the US EPA acceptable level (10−6) by 40-fold in the summer and 30-fold in the winter. Benzene was found to be the highest contributor to cancer risk (39–43%), followed by 1,3-butadiene (25–29%), both originating from traffic gasoline evaporation and combustion. The EC attributable average mortality fraction was 7.8–10%, while the average attributable number of deaths (AD) and years of life lost (YLL) were found to be 257–327 and 3086–3923, respectively. Our findings provide a baseline for future air monitoring programs, and for interventions aiming at reducing cancer risk in this population.
A study on tropospheric aerosols involving Fe particles with an industrial origin is tackled here. Aerosols were collected at the largest exhausts of a major European steel metallurgy plant and around its near urban environment. A combination of bulk and individual particle analysis performed by SEM–EDX provides the chemical composition of Fe-bearing aerosols emitted within the factory process (hematite, magnetite and agglomerates of these oxides with sylvite (KCl), calcite (CaCO3) and graphite carbon). Fe isotopic compositions of those emissions fall within the range (0.08‰ < δ56Fe < +0.80‰) of enriched ores processed by the manufacturer (−0.16‰ < δ56Fe < +1.19‰). No significant evolution of Fe fractionation during steelworks processes is observed. At the industrial source, Fe is mainly present as oxide particles, to some extent in 3–4 μm aggregates. In the close urban area, 5 km away from the steel plant, individual particle analysis of collected aerosols presents, in addition to the industrial particle type, aluminosilicates and related natural particles (gypsum, quartz, calcite and reacted sea salt). The Fe isotopic composition (δ56Fe = 0.14 ± 0.11‰) measured in the close urban environment of the steel metallurgy plant appears coherent with an external mixing of industrial and continental Fe-containing tropospheric aerosols, as evidenced by individual particle chemical analysis. Our isotopic data provide a first estimation of an anthropogenic source term as part of the study of photochemically promoted dissolution processes and related Fe fractionations in tropospheric aerosols. 相似文献
From 2004 until 2006, reform of US agricultural subsidy programmes seemed a likely result of pressure from the World Trade Organization. Many groups saw this pressure as an opportunity to ‘green’ farm policy by crafting environmental service payments that could replace crop subsidies. Yet the 2008 US farm bill fell short of such drastic changes. This paper uses discourse analysis to trace the decline of prospects for reform of the farm bill, and a shift to incremental policy making between 2006 and 2008. It finds that, in addition to political and situational factors, striking discursive shifts altered policy debates and outcomes to create particular conservation impacts. It thus argues for broader use of rhetoric theory and discourse analysis to assess environmental policy. Implications for land conservation are presented in the context of interest group tactics. 相似文献
Increased use of agrochemical products to improve yields for irrigated crops in sub-Saharan Africa has been accompanied by a significant increase in the risk of environmental contamination. Detailed examples of the fate of pesticides after initial spreading on crop fields are scarce in tropical regions, where safe practices and related health risks are poorly understood by smallholder farmers. In the semi-arid environment of the Lake Chad Basin, SE Niger, both intrinsic properties of pesticides and extrinsic factors such as soil and climate helped to characterize processes leading to an accumulation of pesticides in soils. Analysis by HPLC-UV of a 6 m deep soil profile showed the presence of Paraquat at concentrations from 953?±?102 μg kg?1 to 3083?±?175 μg kg?1 at depths between 0.80 and 2.75 m below the land surface. Soil analysis revealed that up to approximately 15 % of the total soil matrix consists of smectites, a clay mineral capable of retaining cationic pesticides such as Paraquat, and a very low content of organic matter (<0.15 wt.% TOC). Paraquat could be stored and not bioavailable in a clayey barrier at approximately 2-m depth and therefore does not represent an immediate risk for populations or environment in this form. However, if the Paraquat application rate remains constant, the clayey barrier could reach a saturation limit within 150–200 years and 180–220 years if we consider a DT50 in soil of ~1,000 days (FAO). Consequently, it could lead to a deeper infiltration and so a pollution of groundwater. Such a scenario can represent a health risk for drinking water and for the Lake Chad, which is a major resource for this densely populated region of semi-arid Africa. Further analyses should focus on deeper layers and groundwater Paraquat contents to validate or invalidate the hypothesis of storage in this clay-rich layer. 相似文献
The on-road transportation (ORT) and power generation (PG) sectors are major contributors to carbon dioxide (CO2) emissions and a host of short-lived radiatively-active air pollutants, including tropospheric ozone and fine aerosol particles, that exert complex influences on global climate. Effective mitigation of global climate change necessitates action in these sectors for which technology change options exist or are being developed. Most assessments of possible energy change options to date have neglected non-CO2 air pollutant impacts on radiative forcing (RF). In a multi-pollutant approach, we apply a global atmospheric composition-climate model to quantify the total RF from the global and United States (U.S.) ORT and PG sectors. We assess the RF for 2 time horizons: 20- and 100-year that are relevant for understanding near-term and longer-term impacts of climate change, respectively. ORT is a key target sector to mitigate global climate change because the net non-CO2 RF is positive and acts to enhance considerably the CO2 warming impacts. We perform further sensitivity studies to assess the RF impacts of a potential major technology shift that would reduce ORT emissions by 50% with the replacement energy supplied either by a clean zero-emissions source (S1) or by the PG sector, which results in an estimated 20% penalty increase in emissions from this sector (S2). We examine cases where the technology shift is applied globally and in the U.S. only. The resultant RF relative to the present day control is negative (cooling) in all cases for both S1 and S2 scenarios, global and U.S. emissions, and 20- and 100-year time horizons. The net non-CO2 RF is always important relative to the CO2 RF and outweighs the CO2 RF response in the S2 scenario for both time horizons. Assessment of the full impacts of technology and policy strategies designed to mitigate global climate change must consider the climate effects of ozone and fine aerosol particles. 相似文献