Background For their high photoreactivity, Fe(III)-carboxylate complexes are important sources of H2O2 for some atmospheric and surface
waters. Citrate is one kind of carboxylate, which can form complexes with Fe(III). In our previous study, we have applied
Fe(III)-citrate complexes to degrade and decolorize dyes in aqueous solutions both under UV light and sunlight. Results have
shown that carboxylic acids can promote the photodegradation efficiency. It is indicated that the photolysis of Fe(III)-citrate
complexes may cause the formation of some reactive species (e. g. H2O2 and ·OH). This work is attempted to quantify hydroxyl
radicals generated in the aqueous solution containing Fe(III)-citrate complexes and to interpret the photoreactivity of Fe(III)-citrate
complexes for degrading organic compounds.
Methods By using benzene as the scavenger to produce phenol, the photogeneration of ·OH in the aqueous solution containing Fe (III)-citrate
complexes was determined by HPLC.
Results and Discussion In the aqueous solution containing 60.0/30.0 mM Fe(III)/citrate and 7.0 mM benzene at pH 3.0, 96.66 mM ·OH was produced after
irradiation by a 250W metal halide light (l ≥ 313 nm) for 160 minutes. Effects of initial pH value and concentrations of Fe(III)
and citrate on ·OH radical generation were all examined. The results show that the greatest photoproduction of ·OH in the
aqueous solution (pH ranged from 3.0 to 7.0) was at pH 3.0. The photoproduction of ·OH increased with increasing Fe(III) or
citrate concentrations.
Conclusion In the aqueous solutions containing Fe(III)-citrate complexes, ·OH radicals were produced after irradiation by a 250W metal
halide light. It can be concluded that Fe(III)-citrate complexes are important sources of ·OH radicals for some atmospheric
and surface waters.
Recommendations and Outlook It is believed that the photolysis of Fe(III)-citrate complexes in the presence of oxygen play an important role in producing
·OH both in atmospheric waters and surface water where high concentrations of ferric ions and citrate ions exist. The photoproduction
of ·OH has a high oxidizing potential for the degradation of a wide variety of natural and anthropogenic organic and inorganic
substances. We can use this method for toxic organic pollutants such as organic dyes and pesticides. 相似文献
Environmental Science and Pollution Research - Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production.... 相似文献
Microbial communities are important for high composting efficiency and good quality composts. This study was conducted to compare the changes of physicochemical and bacterial characteristics in composting from different raw materials, including chicken manure (CM), duck manure (DM), sheep manure (SM), food waste (FW), and vegetable waste (VW). The role and interactions of core bacteria and their contribution to maturity in diverse composts were analyzed by advanced bioinformatics methods combined sequencing with co-occurrence network and structural equation modeling (SEM). Results indicated that there were obviously different bacterial composition and diversity in composting from diverse sources. FW had a low pH and different physiochemical characteristics compared to other composts but they all achieved similar maturity products. Redundancy analysis suggested total organic carbon, phosphorus, and temperature governed the composition of microbial species but key factors were different in diverse composts. Network analysis showed completely different interactions of core bacterial community from diverse composts but Thermobifida was the ubiquitous core bacteria in composting bacterial network. Sphaerobacter and Lactobacillus as core genus were presented in the starting mesophilic and thermophilic phases of composting from manure (CM, DM, SM) and municipal solid waste (FW, VW), respectively. SEM indicated core bacteria had the positive, direct, and the biggest (>?80%) effects on composting maturity. Therefore, this study presents theoretical basis to identify and enhance the core bacteria for improving full-scale composting efficiency facing more and more organic wastes.